
C H A P T E R

 LightStream 2020 MIB Reference 7-1

7

LightStream 2020 MIB Reference

Network management systems that use the Simple Network Management Protocol (SNMP) work
with information stored in a Management Information Base (MIB). The MIB is a collection of
variables known as MIB objects. The values of MIB objects help to govern the status and activities
of LightStream 2020multiservice ATM switch(LS2020 switch)software and hardware. The values
of MIB objects are written by LS2020 operational software and by network management system
(NMS) software, including the CLI. When NMS software displays the activities and status of the
LS2020 node, it obtains them by reading the values of MIB objects.

The major branches of the MIB are themselves referred to as MIBs, such as the FDDI MIB, the
Bridge MIB, and the SONET MIB. Most of these MIBs are public standards which are described in
publicly available RFC documents.

This chapter

• Describes the organization of the MIB used to manage LS2020 enterprise ATM switches.

• Identifies the RFCs that describe some of the most important standard MIBs.

• Describes where to find the LS2020 private MIB file on line.

• Presents the structure of each branch of the LS2020 private MIB.

• Describes how to determine the addresses of MIB objects. (The SNMP commandsgetsnmp,
getnextsnmp, setsnmp, andwalksnmp require MIB addresses as arguments. These commands
are described in the chapter entitled “MIB Commands.”)

• Tells you how to read and interpret the information in the LS2020 private MIB file.

7-2 LightStream 2020 CLI Reference Manual

MIB Overview

MIB Overview
Figure 7-1 shows a high-level diagram of the MIB that is used to manage LS2020 switches. The
high-level organization of the MIB is defined in RFC 1155,Structure of Management Information
(SMI). (The full title isStructure and Identification of Management Information for TCP/IP-based
Internets.) Public MIBs have been defined by various standards bodies to fit in this structure. There
is also a place defined in it for private MIBs, such as the LS2020 private MIB.

Figure 7-1 Overall MIB Structure

The MIB has a hierarchical tree structure:

• The root of the tree, at the top, is the iso MIB object. (The ISO is the International Standards
Organization.)

• There can be one or more branches under any given object.

• The number in parentheses after each object indicates which branch the object is in (of the
branches descending from the object above it).

• Not all branches are shown here. For example, only branches 2, 3, and 4 are shown under the
internet(1) object:

— Branch 2 is rooted in the mgmt object.

— Branch 3 is rooted in the experimental object.

— Branch 4 is rooted in the private object.

iso (1)

org (3)

dod(6)

mgmt(2)

mib-2(1)

lightStream(711)

enterprises(1)

internet(1)

.

.

.
transmission(10)

ds3(30)

SNMP(11)system(1)

interfaces(2)

at(3)

ip(4)

icmp(5)

tcp(6)

udp(7)

ds1(18)

LightStream
Private MIB

dot3(7) fddi(15)

dot1dBridge(17)

sonetMIB(39)

H
32

77

private(4)experimental(3)

 LightStream 2020 MIB Reference 7-3

Accessing MIBs on Line

• The lowest-level objects in any given branch (not shown here) are sometimes referred to as
“leaves” of the tree structure. These are the only MIB objects of which there may be individual
instances (an individual port, for example). The higher-level objects define classes of MIB
objects.

Standard MIBs
Many of the objects shown in Figure 7-1 (that is, the branches rooted in those objects) are
themselves referred to as MIBs. Outside of the private MIB branch, these are all standard MIBs. For
information on some of the standard MIBs shown in Figure 7-1, refer to the following
public-domain documents:

LS2020 Private MIB
The LS2020 private MIB is in the private subtree (under the private object). This is the MIB that is
described in the remainder of this chapter.

Accessing MIBs on Line
There are two ways to access a MIB, including the LS2020 private MIB:

• Use SNMP commands in the CLI to display MIB object names and values.

• Use NP O/S display commands to examine the object names, definitions, and descriptions in the
MIB file itself.

These two methods are discussed in the following subsections. In addition, some network
management applications include MIB browsing software that displays the descriptive text that is
given in the definition of each MIB object under the heading “DESCRIPTION.”

MIB Request for Comment (RFC) Document

MIB-II RFC 1213

Dot-3 Ethernet MIB RFC 1398

FDDI MIB RFC 1512

DS1 MIB RFC 1406

DS3 MIB RFC 1233

Dot-1 Bridge MIB RFC 1493

SONET MIB RFC 1595

7-4 LightStream 2020 CLI Reference Manual

Accessing MIBs on Line

Displaying MIB Objects with CLI Commands
You can use CLI commands to view MIB object names and values.

Thebrowse andwalksnmp commands each display the set of objects in a specified branch of the
MIB. The default for thebrowse command is the iso object at the root of the MIB; thewalksnmp
command has no default and requires an argument.

Thegetsnmpcommand displays an individual instance of a leaf object at the bottom of a branch. The MIB
address in its argument must include an object identifier. See the subsections entitled “MIB Addresses” and
“Object Identifiers.”

Thebrowse,walksnmp,getsnmp,getnextsnmp, andsetsnmpcommands are described in thechapter
entitled“MIB Commands.”

MIB Addresses
A MIB address identifies a particular MIB object by giving its location in the MIB.

You can specify the address of a MIB object in a number of ways. For example, the following MIB
addresses all refer to the same MIB object:

• An object name:

sysContact.0

• A path of dot-separated numbers (the numbers in parentheses in Figure 7-1 and Figure 7-3),
beginning with the iso object at the root of the MIB:

1.3.6.1.2.1.1.4

• A combination, where the first element is the name of a branch and the numbers specify
successive branches in the subtree under it:

iso.3.6.1.2.1.1.4
org.6.1.2.1.1.4
dod.1.2.1.1.4
internet.2.1.1.4
mgmt.1.1.4
mib.1.4
system.4

walksnmp To learn the names of MIB variables in a subtree, specify the name of the object at
the head of the subtree as the argument of thewalksnmp command. This command
displays all the branches and leaves below the specified point in the MIB.

cli> walksnmp fddi

browse To step through the branches of the MIB tree one at a time, specify a branch as the argument
of thebrowse command. (The default is the iso object.) When you reach the end of a
branch, this command displays the values of leaves one at a time.

cli> browse mib-2

getsnmp To display the value of a single MIB object at the end of a branch, specify an
individual instance of a “leaf” as the argument of thegetsnmpcommand.

cli> getsnmp sysContact.0

 LightStream 2020 MIB Reference 7-5

How MIB Objects Are Defined

Object Identifiers
To identify a single instance of a MIB object at the end of a branch, you specify the object name, followed by a
numeric suffix known as an object identifier. The object name is separated by a dot from the object identifier.

If there is only a single instance of the given object, the identifier suffix for that instance is 0. For
example, there is only one instance of the sysContact object, so its identifier is sysContact.0. The
following command displays the name of the contact person for the target node:

cli> getsnmp sysContact.0

You can determine what object identifier is used to specify a single instance of a given MIB object
by examining the definition of that object in the MIB. (They are also included in the descriptions of
configurable attributes in theLightStream 2020 Configuration Guide.) The following section
describes the process by which MIB objects are defined, using examples from the private MIB file.
For more information about object identifiers in particular, see the subsections entitled “Object
Identifiers in the MIB File,” “How the ifIndex Value Specifies a Unique Port,” and
“Multiply-Indexed Objects.”

Reading a MIB File
Detailed descriptions of the objects in a MIB are given in the MIB file in which the MIB is defined.
The definitions of a standard MIB are elaborated in somewhat greater detail in the RFC document
that specifies the MIB (see the subsection entitled “Standard MIBs”).

The location of the LS2020 private MIB file depends upon the system on which you are looking.

Use a text display program to examine this file. For example, to view the file on an LS2020 switch
with themore command, enter the following commands:

LSnode:2# cd /usr/app/base/etc
LSnode:2# more private_mib.asn

To view the file with the vi editor, enter the following commands:

LSnode:2# cd /usr/app/base/etc
LSnode:2# vi private_mib.asn

See theLightStream 2020 NP O/S Reference Manual for information about using themore
command and the vi editor.

How MIB Objects Are Defined
This section uses instances from the LS2020 private MIB to illustrate how MIB objects are defined.
The MIB object names and their definitions in the private MIB file are compiled into the operational
code on the node. The file is write protected. There are comments in the file which are not compiled
into the code; each comment line is marked with two hyphens (--) before the comment text, usually
in the left margin.

If you are connected to ... Look in this directory ...

an LS2020 node /usr/app/base/etc/private_mib.asn

a Workstation running HP OpenView StreamView /usr/OV/snmp_mibs/lightstream

a Workstation not running HP OpenView StreamView /LightStream-2.1/mib/lightstream.asn

7-6 LightStream 2020 CLI Reference Manual

How MIB Objects Are Defined

The beginning of the file includes

• A section in which some object definitions are imported from standard MIBs

• Comments describing the format for port numbers (see the subsection entitled “How the ifIndex
Value Specifies a Unique Port,” below)

• Some global definitions, described in the MIB file as “textual conventions”

The definitions of the lsOther objects in the private MIB file serve here as simple examples of how
objects are defined in the MIB:

-- lsOther is used to define varbinds in trap message

 lsOther OBJECT IDENTIFIER ::= { lightStreamOIDs 2 }

 lsTrapText OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "This is the OID of the free formatted string used in
 enterprise specific traps to describe the event."
 ::= { lsOther 2 }

 LsTrapName OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The first object in an enterprise specific
 trap that contains the trap level, trap name and time
 the trap occurred."
 ::= { lsOther 3 }

These definitions have the following elements:

• The first line is a comment that describes the purpose of the lsOther objects. The comment is
marked by two hyphens in the left margin.

• The lsOther object itself is defined as an object identifier, specified as the second branch under
the lightStreamOIDs object.

• The variable in the SYNTAX field specifies what kind of value the object can have. Both lsOther
objects are defined as DisplayString objects. The definition of DisplayString was imported from
MIB-II at the beginning of the MIB file. (MIB-II is referred to there as RFC1213-MIB.) See the
subsection entitled “Variables Used in the SYNTAX Field” for a list of values that may be
specified in the SYNTAX field.

• In the ACCESS field, both lsOther objects are defined as not accessible. This means they are only
used internally by the software. In most of the object definitions in the private MIB, the ACCESS
field has the value read-only or read-write.

• The DESCRIPTION field contains text describing the MIB object. The description text is within
quotation marks. Some NMS software can display this text.

• The last line of the definition specifies the object as an ordinally numbered branch of a
higher-level object. (It is these numbers that appear in parentheses in Figure 7-1.)

— The object identifier lsOther is defined as the second branch of the lightStreamOIDs object.

— The lsTrapText object is branch number 2 under lsOther. The lsTrapName object is branch
number 3 under lsOther. (The definition of branch 1 is not shown in the example, because it
is commented out in the file.)

 LightStream 2020 MIB Reference 7-7

How MIB Objects Are Defined

Variables Used in the SYNTAX Field
The variables that can be specified in the SYNTAX field are defined in three ways: by importation
from a different MIB file, by global definition at the beginning of the given MIB file, or in an ad hoc
way for each table defined in the given MIB file.

In the definitions of the lsOther objects, the DisplayString variable was imported from a standard
MIB for use in the SYNTAX fields of definitions in the LS2020 private MIB. Table 7-1 lists
imported SYNTAX variables:

Table 7-1 SYNTAX Variables That Are Imported from Standard MIBs

Other SYNTAX variables are globally defined at the beginning of the private MIB file as “text
conventions” for use in many object definitions. Table 7-2 lists these variables:

Table 7-2 Other Globally Defined SYNTAX Variables

In addition, a SYNTAX variable is defined for the objects that make up each table in the MIB. The
definitions of MIB tables are presented in the following subsection.

Tables in the MIB File
When a set of MIB objects describe attributes of the same entity (such as a card or a port), they are
defined as a table. All the objects in a table use the same object identifier (such as a card number or
port number) as an index.

SYNTAX Variable Source Object Type Values

IpAddress RFC 1155 (SMI) Octet string 32-bit IP address

Counter RFC 1155 (SMI) Integer 0 – 4,294,967,295;
Wraps to 0 when max is reached

Gauge RFC 1155 (SMI) Integer 0 – 4,294,967,295;
Latches at max attained value

TimeTicks RFC 1155 (SMI) Integer Hundredths of a second

ifIndex RFC 1213 (mib-2) Integer An interface ID

DisplayString RFC 1213 (mib-2) Octet string A string of printable characters

SYNTAX Variable Object Type Values

LightStreamStatus Integer 1 = enabled
2 = disabled

LightStreamValidation Integer 1 = valid
2 = invalid

LightStreamFilterAction Integer 1 = forward
2 = block

LightStreamUpToMaxAge Integer Range: 1 – 3600

LightStreamDLCI Integer A DLCI number

VCI Integer A VCI number

7-8 LightStream 2020 CLI Reference Manual

How MIB Objects Are Defined

Figure7-2 represents the outline of a typical MIB table, cardTable in the cardInfo branch of the MIB.

Figure 7-2 An Example of a MIB Table

Five different kinds of objects are defined to make a table:

1 cardTable The table object, that is, the name of the table itself.

2 cardEntry The table entry object. The actual table entries (Item 5) are instances of this
object.

3 CardEntry The table entry structure object. This object is not shown in Figure 7-2
because it is not defined as a branch of any higher-level object; its function is
only to provide structure for other objects. It specifies a list of objects (see
Item 5).

4 cardIndex The table index object, an integer.

5 cardName
cardBoardType
...
cardNumPorts

The actual table entries. These are the objects enumerated for the table entry
structure object (see Item 3).

atmSwitch(1)

card Info(2)

cardIndex(1)

cardBoardType(3)

card Table(1)

card Entry(1)

cardName(2)

card NumPorts(12)

... ...

.

.

.

H
52

97

 LightStream 2020 MIB Reference 7-9

How MIB Objects Are Defined

The definitions of these five different kinds of objects are interrelated:

1 The table object, that is, the name of the table itself. The syntax of the table object is specified as
a sequence of table entry objects (more exactly, table entry structure objects; see Item 3, below).

The cardTable object is defined as follows:

cardTable OBJECT-TYPE
SYNTAX SEQUENCE OF CardEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"Card specific information"
::= { cardInfo 1 }

The CardEntry object named here in the SYNTAX field is defined under Item 3 as a set of card
attributes. The cardTable object is defined above as a sequence of these CardEntry attribute sets.

2 The table entry object. Each of the actual table entries (Item 5) is an instance of this object, which
in turn is defined here as an instance of the table entry structure object (Item 3). In this way, each
table entry (Item5) is structured as an instance of the set of attributes enumerated in the definition
of the table entry structure object (Item 3).

The cardEntry object is the first and only object defined under the cardTable object (see the last
line of the definition below and the last line of the definition in Item 1). It is defined as follows:

cardEntry OBJECT-TYPE
SYNTAX CardEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"An entry in the chassis card table. (1-n)"
INDEX { cardIndex }
::= { cardTable 1 }

The two names cardEntry and CardEntry are different. The cardEntry object is defined as an
instance of the CardEntry object. The CardEntry object named in the SYNTAX field is defined
in Item 3 as a set of card attributes. The cardEntry object is thus an instance of that set of card
attributes. The INDEX field specifies the object identifier (see Item 4).

3 The table entry structure object. The name of this object is the same as the name of the table entry
object (Item 2), except that it begins with an uppercase letter. The syntax for this object is
specified as a sequence of object names each with its syntax type. This object defines the
structure of the table and appears in the SYNTAX field in definitions in Items 1 and 2.

The sequence defined by the CardEntry object for the cardEntry object (Item 2) and the
cardTable object (Item 1) is as follows:

CardEntry ::=
SEQUENCE {

cardIndex
INTEGER,

cardName
DisplayString (SIZE (0..255)),

cardBoardType
DisplayString (SIZE (0..255)),

cardLcSoftwareVersion
DisplayString (SIZE (0..255)),

cardLccSoftwareVersion
DisplayString (SIZE (0..255)),

cardPID
INTEGER,

cardMaxVCs
INTEGER,

7-10 LightStream 2020 CLI Reference Manual

How MIB Objects Are Defined

cardOperStatus
INTEGER,

cardAdminStatus
INTEGER,

cardStatusWord
INTEGER,

cardConfigRegister
INTEGER,

cardNumPorts
INTEGER

}

4 The table index object. It is specified as an integer, or sometimes as a dot-separated pair of
integers. The value of this object identifies a single instance of an entry in the table.

For example, the cardIndex object, the first instance of the cardEntry object (see Item 3), is
defined as follows:

cardIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Unique Index consisting of card number."
::= { cardEntry 1 }

To use thegetsnmp command to display the value of one of the objects defined in Item 5, you
must supply a valid value of the index object as the object indicator. (Object indicators are
described more fully in the next section, entitled “Object Identifiers in the MIB File.”) For
example, to display the value of the cardName object for Card 3, you can use thegetsnmp
command as follows:

cli> getsnmp cardName.3

5 The series of definitions of the objects enumerated in Item 3 (e.g., the CardEntry object). Each
of these objects is a leaf under the table entry object, Item 2 (e.g., the cardEntry object).

The second and the last of the 12 leaf objects under the cardEntry object (omitting others for
brevity) are defined as follows:

cardName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION

"Name of Card
::= { cardEntry 2 }

.

.

.

cardNumPorts OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Number of Ports available on this card."
::= { cardEntry 12 }

 LightStream 2020 MIB Reference 7-11

How MIB Objects Are Defined

Object Identifiers in the MIB File
To use a CLI command to address a single instance of an object defined in a MIB table, you must
know the object identifier for that instance. (This requirement was discussed earlier, in the section
entitled “Displaying MIB Objects with CLI Commands.”)

• If a given object is one of a kind, the object identifier is 0 (zero). Examples include sysContact.0
(the name of the administrative contact person for the node), chassisId.0 (the chassis ID), and
mmaSetLock.0 (the variable that controls writes from the CLI to the configuration database).

• For some MIB objects, the object identifier is a card number.

• For many MIB objects, the object identifier is the ifIndex value, which identifies an interface by
its port number, card number, and card type (see the subsection entitled “How the ifIndex Value
Specifies a Unique Port”).

• If a given object is one of a set of objects that describe different attributes of the same entity (such
as a card or a port), the object identifier is specified in the definition of the table (Item 4 in the
preceding section).

This section describes the different kinds of object identifiers that may be specified in the definitions
of tables.

How Object Identifiers Are Specified
In the MIB file, the object identifier for table entries is identified in the INDEX field of the definition
of the table entry object. The entry in this field specifies the structure of table entries. The object identifier is
defined as the table index object (Items 2 and 4 in the section entitled “Tables in the MIB File”). For example,
under the cardTable object, the definition of cardEntry (the table entry object) includes the following INDEX
specification:

INDEX { cardIndex }

In the same example, the cardIndex object is defined as an integer, specified as the card number:

cardIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Unique Index consisting of card number."
::= { cardEntry 1 }

Because of this INDEX specification in the definition of the table entry object, every entry in the table has the
same object identifier. In this example, the index is the number of the particular card whose MIB object values
are being set or read. For instance, the value of cardName.3 is the name of Card 3.

How the ifIndex Value Specifies a Unique Port
In working with CLI commands, you may become accustomed to specifying a unique port number
(a port on a specified card) in the formatc.p, wherec is the card (slot) number andp is the number of a port
on that card. However, when you use thegetsnmp,getnextsnmp, orsetsnmp command with a MIB object
that is indexed by port number as its argument, you must specify the object identifier in a more complex format.
In this format, the card number, the port number, and the port type are all represented by a single integer. This
integer is the value of the ifIndex object. (The ifIndex object is defined in the MIB-II MIB, RFC 1213.)

7-12 LightStream 2020 CLI Reference Manual

How MIB Objects Are Defined

The definition of the portInfoTable object can be used to illustrate how the ifIndex value specifies a
unique port. the portInfoTable object organizes information about ports (interfaces) in much the
same way as the cardTable object organizes card attributes. The index object in the portInfo table is
an ifIndex value, defined as follows:

 portInfoIndex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "This is the ifIndex value of the corresponding
 ifEntry. See comments above."
 ::= { portInfoEntry 1 }

Where the description text in this definition says “see comments above,” it refers to comments at the
beginning of the private MIB file. These comments describe the algorithm for defining the ifIndex
value for a port. This algorithm can be expressed in the followingformula:

((c * 1000) +p + t)

The variables in this formula are as follows:

You can abbreviate this formula in the formatctp. For example, the MIB object that stores the alias
or name for Port 3 on Card 4 is portInfoName.3104 for an Ethernet port, portInfoName.3204 for an
FDDI port, or portInfoName.3004 for a port on any other type of card.

Note The ifIndex value 1255 refers to the control port (port 255) of the NP in Slot1, and the ifIndex
value 2255 refers to the control port of the NP in Slot2. The control port of an NP is used by software
to communicate with the CPU on the NP.

Multiply-Indexed Objects
Some objects are indexed by more than one number. For example, a DLCI must be specified not only
by a DLCI number but also by an ifIndex value identifying a port, and a multicast group is a list of
member ports, each of which must be specified not only by its ifIndex value, but also by a chassis
ID and a multicast group ID. The several parts of a complex object identifier are dot-separated
integers.

c The card number, an integer in the range 1 – 11. A number in the range 1 – 10 is the number of the
physical slot in which the card resides. The number 11 represents the logical interface for the LS2020
ATM network.

p The port number on the card, an integer in the range 0 – 7.

If c is 11 (the logical interface for the LS2020 ATM network),p must be 4.

t An offset indicating the card type. This is an arbitrary numeric value assigned to each type of card. The
values oft are as follows:

100

200

0

Ethernet or Fiber Ethernet

FDDI

Other

 LightStream 2020 MIB Reference 7-13

How MIB Objects Are Defined

For example, the output of the commandgetsnmp frCktInfoLclLMI.4002.16 in the following
example tells us that the local LMI state of the frame relay circuit on DLCI 16, Port 4, Card 2 is
inactive. (In the next section, you will see how to determine that the integer 2 here means that the
local LMI state is inactive.)

cli> getsnmp frCktInfoLclLMI.4002.16
Name: frCktInfoLclLMI.4002.16
Value: 2
cli>

The double index 4002.16 means that this frCktInfoLclLMI object is indexed first by ifIndex value
4002 (Card 4, Type 0, Port 2) and then by DLCI number 16.

Interpreting Integer Values of MIB Objects
To interpret the value of a MIB object, refer to the definition of the object. In the last example in the
preceding section, the value of the frCktInfoLclLMI.4002.16 object was displayed as2. To interpret
this value, examine the private MIB file and read the description text for frCktInfoLclLMI in the
private_mib.asn MIB file. The definition of this object is as follows:

frCktInfoLclLMI OBJECT-TYPE
SYNTAX INTEGER {

active(1),
inactive(2)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION

"This variable indicates the local LMI
state of the circuit."

::= { frCktInfo

The syntax field in this definition specifies that the value 2 means “inactive.”

7-14 LightStream 2020 CLI Reference Manual

Major Branches of the Private MIB

Major Branches of the Private MIB
The high-level structure of the LS2020 private MIB is shown in Figure 7-3.

Figure 7-3 Structure of the LS2020 Private MIB

Note The three vertical dots in Figure7-3 indicates the place where higher levels of the MIB belong.
These upper levels are shown in Figure7-1.

The major branches of the private MIB are described in the following sections:

• atmSwitch

• lightStreamInternet

• lightStreamVLI

• lightStreamCbr

Three objects shown in Figure 7-3 are not major branches of the MIB:

lightStreamOIDs Miscellaneous object identifiers

lightStreamEOM The end-of-MIB mark

lightStreamDebug MIB objects used for debugging

.

.

.

atmSwitch(1)

enterprises(1)

lightStreamOIDs(1)

lightStreamProducts(2)

lightStream(711)

lightStreamInternet(3) lightStreamDebug(1001)

lightStreamVli(4)

lightStreamCbr(5)

lightStreamEOM(1000)

H
32

78

 LightStream 2020 MIB Reference 7-15

atmSwitch

atmSwitch
Figure 7-4 shows the atmSwitch subtree, which comprises most of the LS2020 private MIB.

Figure 7-4 The atmSwitch Subtree

The branches of the atmSwitch subtree are described in the following sections:

• chassisInfo

• cardInfo

• portInfo

• portTransmission

• congestionAvoidance

• mmaInfo

• collectInfo

• lsPortProtocols

• lsPrivate

• lsExperimental

• lsIR

• lsStatistics

• tcsInfo

• lsGID

• lsPID

• lsND

• lwmaInfo

.

.

.

atmSwitch(1)

enterprises(1)

port
Transmission(4)

lwma
Info(18)

lightStreamProducts (2)

lsPID
(16)

lsIR
(12)

lsGID
(15)

lsND
(17)

tcsInfo
(14)

lsPrivate
(10)

collect
Info(7)

port
Info(3)

chassis
Info(1)

card
Info(2)

congestion
Avoidance(5)

mma
Info(6)

lsPort
Protocols(8)

lsExperi-
mental(11)

lsStatis-
tics(13)

lightStream(711)

lightStreamOIDs(1)

H
32

79

7-16 LightStream 2020 CLI Reference Manual

atmSwitch

chassisInfo
Figure 7-5 shows the chassisInfo branch of the atmSwitch subtree.

Figure 7-5 The chassisInfo Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) is used to indicate that
additional objects exist. See the MIB file for detailed information.

cardInfo
Figure 7-6 shows the cardInfo branch of the atmSwitch subtree.

Figure 7-6 The cardInfo Branch

atmSwitch(1)

chassisNetworkMask(5)

chassisId(2)

chassisActiveIpAddr(3)

chassisTod(12)

. . .

...chassisInfo(1)

chassisSecondaryIpAddr(4)

H
52

96
atmSwitch(1)

card Info(2)

cardIndex(1)

cardBoardType(3)

card Table(1)

card Entry(1)

cardName(2)

card ConfigRegister(11)

... ...

.

.

.

H
32

81

atmSwitch(1)

card Info(2)

cardIndex(1)

cardBoardType(3)

card Table(1)

card Entry(1)

cardName(2)

card NumPorts(12)

... ...

.

.

.

H
52

97

 LightStream 2020 MIB Reference 7-17

atmSwitch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) or a vertical line of dots
is used to indicate that additional objects exist. See the MIB file for detailed information.

portInfo
Figure 7-7 shows the portInfo branch of the atmSwitch subtree.

Figure 7-7 The portInfo Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) or a vertical line of dots
is used to indicate that additional objects exist. See the MIB file for detailed information.

There are two tables in the portInfo branch, portInfoTable, in which each table entry contains
information about one port on a card, and lsEtherTable, whose only entry is the lsEtherMediaType
object.

... ...

atmSwitch(1)

portInfoTable(1)

portInfoEntry(1)

portInfoIndex(1)

portInfoLineType(6)

.

.

.

portInfo(3)

lsEtherTable(2)

lsEtherEntry(1)

lsEtherMediaType(1)

H
52

98

7-18 LightStream 2020 CLI Reference Manual

atmSwitch

portTransmission
Figure 7-8 shows the portTransmission branch of the atmSwitch subtree.

Figure 7-8 The portTransmission Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) is used to indicate that
additional objects exist. See the MIB file for detailed information.

The objects in the portTransmission branch include a number of MIB object tables: one for each card
type, one for cell routing information (controlling cell delay variation), and one for virtual path trunking.
Each entry of a table for a card type (such as ls1InfoEntry, ms1InfoEntry, or npInfoEntry) contains
information about a port on a card.

atmSwitch(1)

portTransmission(4)

ls1InfoTable(1)

......

ms1InfoTable(2)

npInfoTable(3)

clc1InfoTable(4)

oc3InfoTable(5)

cemac1InfoTable(6)

routingportInfoTable(7)

t3e3InfoTable(8)

vptInfo(9)

vptCfgTable(1)

clc1cardInfo(10)

clc1cardCfgTable(1)

H
32

83

 LightStream 2020 MIB Reference 7-19

atmSwitch

congestionAvoidance
Figure 7-9 shows the objects in the congestionAvoidance branch of the atmSwitch subtree.

Figure 7-9 The congestionAvoidance Branch

mmaInfo
Figure 7-10 shows the mmaInfo branch of the atmSwitch subtree.

Figure 7-10 The mmaInfo Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) or a vertical line of dots
is used to indicate that additional objects exist. See the MIB file for detailed information.

The mmaInfo branch contains one table, mmaNumNameTable.

atmSwitch(1)

congestionAvoidance(5)

caMaxIntervalPermitLimit(1) caMinIntervalPermitLimit(2) caMinIntervalCaInfo(3)

H
32

84

atmSwitch(1)

mmaInfo(6)

mmaDbActive(1) . . . mmaNumName
Table(16)

mmaNameEntry

... ...

.

.

.

mmaNumName-
Number

mmaNumName

mmaTrapLog(15) . . . mmaMibVersion(22)

H
32

85

7-20 LightStream 2020 CLI Reference Manual

atmSwitch

collectInfo
Figure 7-11 shows the collectInfo branch of the atmSwitch subtree.

Figure 7-11 The collectInfo Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) or a vertical line of dots
is used to indicate that additional objects exist. See the MIB file for detailed information.

The collectInfo branch contains two tables:

• collectTable

• collectDatabase

Each row of each table contains information about a collection that has been defined. The collectInfo
branch also contains the collectCommunityName and rmonCommunityName objects (the latter not
currently used).

atmSwitch(1)

collectInfo(7)

collectIndex(1)

collectOperStatus(8)

collectEntry(1)

collectDbIndex(1)

collectDbStatus(4)

collectTable(1)
Community-
Name(3)

collectDatabase(2)

... ...

rmon-
Community-
Name(4)

.

.

.

.

.

.

collect-

collectDbEntry(1)

H
52

99

 LightStream 2020 MIB Reference 7-21

atmSwitch

lsPortProtocols
Figure 7-12 shows the lsPortProtocols branch of the atmSwitch subtree.

Figure 7-12 The lsPortProtocols Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) or a vertical line of dots
is used to indicate that additional objects exist. See the MIB file for detailed information.

The lsPortProtocols branch includes a number of tables containing information about the various
services available on an LS2020 network.

lsPrivate
The lsPrivate branch of the atmSwitch subtree (atmSwitch.10) is reserved for use in later releases.
It is currently empty.

atmSwitch(1)

lsPortProtocols(8)

EdgePort(1)

emEdgePort-
Table(1)

emEdgePort-
Entry(1)

ffCktInfo(4)frDceInfo(2)

frCktInfo(3)

frProvMi-
Table(1)

frProvMi-
Entry(1)

ffCktCfg-
Table(1)

ffCkt-
Entry(1)

ffCktInfo-
Table(1)

ffCktInfo-
Entry(1)

frCktCfg-
Table(1)

frCktInfo-
Table(2)

frCktInfo-
Entry(1)

frCkt-
Entry(1)

sUniCktInfo(5)

sUniCktInfo-
Table(2)

sUniCktInfo-
Entry(1)

sUniCktCfg-
Table(1)

sUniCkt-
Entry(1)

... ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

mcEndptInfo(7)

pvcInfo(6)

pvcCfg-
Table(1)

pvc-
Entry(1)

.

.

.

mcEndptCfg-
Table(1)

mcEndpt-
Entry(1)

.

.

.

pvccbrInfo(8)

pvcCbrCfg-
Table(1)

pvcCbr-
Entry(1)

.

.

.

H
32

87

7-22 LightStream 2020 CLI Reference Manual

atmSwitch

lsExperimental
Figure 7-13 shows portions of the lsExperimental branch of the atmSwitch subtree.

Figure 7-13 The lsExperimental Branch

The lsExperimental branch contains objects that can be used by Cisco Systems to provide advanced
support functions and analysis of network performance. This branch is little used. Three tables in
this branch contain MIB objects that are used to collect cell statistics and to collect statistics on edge
cards for frame relay and frame forwarding. These tables are

• lsFrameRelayDlciStatTable (lsEdgeStatistics.3)

• lsFrameForwardStatTable (lsEdgeStatistics.7)

• lsCellStatistics (lsExperimental.6)

To obtain the statistical information associated with these MIB objects,use thegetsnmp command.

Note The figure shows only those objects in this branch that are of potential use for statistics. An
ellipsis (...) or a vertical line of dots is used to indicate where additional objects exist. See the MIB
file for detailed information.

atmSwitch(1)

lsEdgeStatistics(1)

lsFrameRelayDlciStatTable(3)

lsExperimental(11)

lsCellStatistics(6)

lsFrameForwardStatTable(7)

.

.

.

.

.

.

...

... ...

H
32

88

 LightStream 2020 MIB Reference 7-23

atmSwitch

lsIR
Figure 7-14 shows the internal routing (lsIR) branch of the atmSwitch subtree.

Figure 7-14 The lsIR Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) is used to indicate that
additional objects exist. See the MIB file for detailed information.

The lsIR branch contains objects pertaining to internal routing.

lsStatistics
The lsStatistics branch of the atmSwitch subtree (atmSwitch.13) is currently empty. It will be used
for objects (presently in the lsExperimental branch) that the LS2020 uses to analyze network
performance.

atmSwitch(1)

irRoutingPathsGenerated(1)

irRoutingPathGenSuccess(2)

lsIR(12)

irRoutingPathGenFailedNoResources(3)

irRouting AveragePathLength(6)

... ...

...

H
3
2
8
9

7-24 LightStream 2020 CLI Reference Manual

atmSwitch

tcsInfo
Figure 7-15 shows the tcsInfo branch of the atmSwitch subtree.

Figure 7-15 The tcsInfo Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) is used to indicate that
additional objects exist. See the MIB file for detailed information.

The tcsInfo branch contains objects pertaining to the test and control system (TCS).

atmSwitch(1)

tcsInfo(14)

tcsEntry(1)

tcsTable(1) tcsPrimarySwitch(2) tcsPowerSupplyA(3)

tcsIndex(1) tcsTemp1(2) tcsTemp2(3) . . .

. . .

... ...

tcsPowerSupplyTypeB(6)

tcsFcLastLoadExitStatus(21)

H
32

90

 LightStream 2020 MIB Reference 7-25

atmSwitch

lsGID
Figure 7-16 shows the lsGID branch of the atmSwitch subtree.

Figure 7-16 The lsGID Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead, an ellipsis (...) or a vertical line of dots is used to indicate that additional objects exist. See
the MIB file for detailed information.

The lsGID branch contains objects pertaining to the global information distribution (GID) system.

atmSwitch(1)

lsGID(15)

gidGeneralGroup(1) gidEventGroup(9)gidNbrGroup(2)

gidSoftware-
VersionNumber(1)

gidDebugLevel(8)

gidEventLinkEvents-
Delivered(1)

gidNbrCount(1)

gidNbrEntry(1)
gidEventGeneric-
GinfoEventTable(4)

.

.

.

gidNbrEIA(1)

gidNbrNew-
GenericAnnounce-
mentsRx(13)

... ...

.

.

.

...

.

.

.
gidNbrTable(2)

.

.

.

H
32

91

7-26 LightStream 2020 CLI Reference Manual

atmSwitch

lsPID
Figure 7-17 shows the lsPID branch of the atmSwitch subtree.

Figure 7-17 The lsPID Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) or a vertical line of dots
is used to indicate that additional objects exist. See the MIB file for detailed information.

The lsPID branch contains objects that are concerned with operating system processes.

lsPID(16)

atmSwitch(1)

pidAdminStatus(5)

pidTable(1)

pidEntry(1)

pidIndex(1)

pidName(2)

......

.

.

.

H
32

92

 LightStream 2020 MIB Reference 7-27

atmSwitch

lsND
Figure 7-18 shows the lsND branch of the atmSwitch subtree.

Figure 7-18 The lsND Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) or a vertical line of dots
is used to indicate that additional objects exist.

The lsND branch contains objects that pertain to neighborhood discovery.

lsND(17)

atmSwitch(1)

ndLCGroup(2) ndNbrGroup(3) ndRedundancyGroup(7)ndGeneralGroup(1)

.

.

.

.

.

.

.

.

.

.

.

.

. . .

......

H
32

93

7-28 LightStream 2020 CLI Reference Manual

atmSwitch

lwmaInfo
Figure 7-19 shows the lwmaInfo branch of the atmSwitch subtree.

Figure 7-19 The lwmaInfo Branch

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) or a vertical line of dots
is used to indicate that additional objects exist.

The lwmaInfo branch contains objects that pertain to the lightweight management agent (LWMA),
which links application processes to the LS2020 network management system.

lwmaInfo(18)

atmSwitch(1)

lwmaCreationTime(2)

lwmaTrapCliAlias(7)

lwmaTable(1)

lwmaEntry(1)

lwmaIndex(1)

......

.

.

.

H
32

94

 LightStream 2020 MIB Reference 7-29

lightStreamInternet

lightStreamInternet
Figure 7-20 shows the lightStreamBridge and lightStreamLanPort branches in the
lightStreamInternet subtree of the LS2020 private MIB. (The lightStreamInternet object is defined
near the beginning of the MIB file.)

Figure 7-20 The lightStreamInternet Subtree

Note The figure does not show all of the objects in these branches because there are too many of
them. In this figure, no ellipsis (...) is used where objects have been left unspecified.

The lightStreamBridge branch contains objects that pertain to bridging, and the lightStreamLanPort
branch contains objects that define port attributes required for LAN ports.

enterprises(1)

lightStreamInternet(3). . . atmSwitch(2) lightStreamVli(4)

lightStream(711)

lightStreamBridge(1)

. . .

lightStream-
Bridge-
PortTable(1)

lightStream-
Bridge-
StaticGoTo-
CardSize(4)

lightStream-
Bridge-
FilterParameter-
Table(3)

lightStream-
Bridge-
FilterTable(2)

lsIpPort-
Table(5)

lsIpFilter-
Table(6)

lsIpFilter-
Parameter-
Table(7)

lsIpxPort-
Table(8)

lsIpxFilter-
Table(9)

lsIpxFilter-
Parameter-
Table(10)

lightStreamLanPort(2)

lsLanPort-
Table(1)

H
32

96

7-30 LightStream 2020 CLI Reference Manual

lightStreamVLI

lightStreamVLI
Figure 7-21 shows the lightStreamVli subtree in the LS2020 private MIB. (The lightStreamVli
object is defined near the beginning of the MIB file.)

Figure 7-21 The lightStreamVLI Subtree

The lightStreamVli subtree contains objects that pertain to virtual LAN internetworking (VLI).

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) is used to indicate that
additional objects exist. See the MIB file for detailed information.

enterprises(1)

lightStreamInternet(3).atmSwitch(2) LightStreamVli(4)

lightStream(711)

LightStreamVli
Version(1)

lsMcastGrp-
Table(2)

lsTrafficProfile-
Table(3)

lightStreamVli-
PortCtlTable-
Table(4)

lightStreamVli-
PortWorkGroup-
Table(5)

H
32

97

 LightStream 2020 MIB Reference 7-31

lightStreamCbr

lightStreamCbr
Figure 7-22 shows the lightStreamCbr subtree in the LS2020 private MIB. It contains one table,
lsNtCfgTable, and a number of other objects relating to constant bit rate traffic.

Figure 7-22 The lightStreamCbr Subtree

The lightStreamCbr subtree contains objects that pertain to constant bit rate traffic.

Note The figure does not show all of the objects in this branch because there are too many of them.
Instead the first and last objects at each level are shown, and an ellipsis (...) is used to indicate that
additional objects exist. See the MIB file for detailed information.

enterprises(1)

lightStreamInternet(3).

LightStreamVli(4)

lightStream(711)

lsNtChassis-
Status(1)

lsNtCfgEntry(1)

lsNtCfgPriority(1)

lsNtClocking-
SwitchAdmin(3)

LightStreamCbr(5)

lsNettimeInfo(1)

lsNtPriority-
Reset(2)

lsNtClocking-
SwitchOper(4)

lsNtCfgTable(5)

lsNtCfgSource(2)

lsNtCfgStatus(3)

lsNtCfgValidation(4)

H
32

98

7-32 LightStream 2020 CLI Reference Manual

lightStreamCbr

