
C H A P T E R

 GNU Bash Shell Reference 2-1

2

GNU Bash Shell Reference

This chapter contains the manual page for the bash shell, produced here for LightStream® 2020
users. Theshell command in CLI accesses the bash shell so that you can execute LynxOS
commands. You can also execute LynxOS commands from the bash shell when you log in as
superuser (root).

Numerous commands are built in to the shell (see Shell Builtin Commands). Of particular interest
are the commandscd, kill , andpwd. Thehelp command displays help information about all the shell
builtin commands.

2-2 LightStream 2020 NP O/S Reference Manual

Name

Name
bash - GNU Bourne-Again SHell

Synopsis
bash [options] [file]

Copyright
Copyright (C) 1989, 1991 by the Free Software Foundation,Inc.

Description
Bash is an sh-compatible command language interpreter that executes commands read from the
standard input or from a file. Bash also incorporates useful features from theKorn andC shells (ksh
and csh). Bash is ultimately intended to be a faithful implementation of the IEEE Posix Shell and
Tools specification (IEEE Working Group 1003.2).

Options
In addition to the single-character shell options documented in the description of the set builtin
command, bash interprets the following flags when it is invoked:

Bash also interprets a number of multi-character options. To be recognized, these options must
appear on the command line before the single-character options.

-c string If the -c flag is present, then commands are read fromstring.

-i If the -i flag is present, the shell isinteractive.

-s If the -s flag is present, or if no arguments remain after option processing, then commands are
read from the standard input. This option allows the positional parameters to be set when
invoking an interactive shell.

- A single- signals the end of options and disables further option processing. Any arguments after
the- are treated as filenames and arguments. An argument of-- is equivalent to an argument of-.

-norc Do not load the personal initialization file ~/.bashrc if the shell is interactive. This is
the default if the shell name is sh.

-noprofile Do not read either /etc/profile or ~/.bash_profile. By default, bash normally reads
these files when it is invoked as a login shell.

-rcfile file Execute commands from file instead of the standard personal initialization file
~/.bashrc, if the shell is interactive.

-version Show the version number of this instance of bash when starting.

-quiet Do not be verbose when starting up (do not show the shell version or any other
information).

-login Make bash act as if it had been invoked by login(1).

 GNU Bash Shell Reference 2-3

Arguments

Arguments
If arguments remain after option processing, and neither the-c nor the-s option has been supplied,
the first argument is assumed to be the name of a file containing shell commands. If bash is invoked
in this fashion,$0 is set to the name of the file, and the positional parameters are set to the remaining
arguments. Bash reads and executes commands from this file, then exits.

Definitions

Reserved Words
Reserved words are words that have a special meaning to the shell. The following words are
recognized as reserved when unquoted and either the first word of a simple command (see Shell
Grammar below) or the third word of a case or for command:

! casedo done elif else esac fi for function if in then until while { }

Shell Grammar

Simple Commands
A simple command is a sequence of optional variable assignments followed byblank-separated
words and redirections, and terminated by acontrol operator. The first word specifies the command
to be executed. The remaining words are passed as arguments to the invoked command.

The return value of asimple command is its exit status, or 128+n if the command is terminated by
signaln.

Pipelines
A pipeline is a sequence of one or more commands separated by the character| . The format for a
pipeline is as follows:

[!] command [| command2 ...]

-nobraceexpansion Do not perform curly brace expansion as csh does.

-nolineediting Do not use the GNU readline library to read command lines if interactive.

blank A space or tab.

word A sequence of characters considered as a single unit by the shell. Also known as a token.

name Aword consisting only of alphanumeric characters and underscores, and beginning with
an alphabetic character or an underscore. Also referred to as an identifier.

metacharacter A character that, when unquoted, separates words. One of the following:

 | & ; () < > <space> <tab>

control operator Atoken that performs a control function. It is one of the following symbols:

 || & && ; ;; () | <newline>

2-4 LightStream 2020 NP O/S Reference Manual

Shell Grammar

The standard output ofcommand is connected to the standard input ofcommand2. This connection
is performed before any redirections specified by the command (see Redirection below).

If the reserved word ! precedes a pipeline, the exit status of that pipeline is the logical NOT of the
exit status of the last command. Otherwise, the status of the pipeline is the exit status of the last
command. The shell waits for all commands in the pipeline to terminate before returning a value.

Each command in a pipeline is executed as a separate process (i.e. in a subshell).

Lists
A list is a sequence of one or more pipelines separated by one of the operators ;, &, &&, or ||, and
optionally terminated by one of ;, &, or <newline>.

Of these list operators, && has highest precedence, || has the next highest precedence, followed by
; and &, which have equal precedence.

If a command is terminated by the control operator &, the shell executes the command in the
background in a subshell. The shell does not wait for the command to finish. Commands separated
by a ; are executed sequentially; the shell waits for each command to terminate in turn.

The control operators && and || denote AND lists and OR lists, respectively. An AND list has the
following form:

command && command2

Here,command2 is executed if, and only if,command returns an exit status of zero. An OR list has
the following form:

command || command2

Here,command2 is executed if and only ifcommand returns a nonzero exit status.

Compound Commands
A compound command is one of the following:

• (list)
list is executed in a subshell. Variable assignments and builtin commands that affect the shell’s
environment do not remain in effect after the command completes.

• { list; }
list is simply executed in the current shell environment. This is known as agroup command.

• for name [inword;] do list ; done
The list of words following in is expanded, generating a list of items. The variablename is set to
each element of this list in turn, andlist is executed each time. If inword is omitted, the for
command executeslist once for each positional parameter that is set (see Parameters below). The
exit status is the exit status of the last command, or zero if no commands were executed.

• caseword in [pattern [| pattern] ...) list ;;] ... esac
A case command first expandsword, and tries to match it against eachpattern in turn. When a
match is found, the correspondinglist is executed. After the first match, no subsequent matches
are attempted. The exit status is zero if no patterns are matches. Otherwise, it is the exit status of
the last command executed inlist.

 GNU Bash Shell Reference 2-5

Comments

• if list thenlist [elif list thenlist] ... [elselist] fi
The if list is executed. If its exit status is zero, thethen list is executed. Otherwise, eachelif list
is executed in turn, and if its exit status is zero, the correspondingthen list is executed and the
command completes. Otherwise, theelselist is executed, if present. The exit status is the exit
status of the last command executed, or zero if no condition tested true.

• while list do list done
until list do list done
Thewhile command continuously executes the dolist as long as the last command inlist returns
an exit status of zero. Theuntil command is identical to thewhile command, except that the test
is negated; the dolist is executed as long as the last command inlist returns a non-zero exit status.
The exit status of thewhile anduntil commands is the exit status of the last dolist command
executed, or zero if none was executed.

• [function]name () { list; }
This defines a function namedname. The body of the function is thelist of commands between
{ and} . Thislist is executed whenevername is specified as the name of a simple command. The
exit status of a function is the exit status of the last command executed in the body. (See
Functions below.)

Comments
In a non-interactive shell, a word beginning with # causes that word and all remaining characters on
that line to be ignored.

Quoting
Quoting is used to remove the special meaning of certain characters or words to the shell. Quoting
can be used to disable special treatment for special characters, to prevent reserved words from being
recognized as such, and to prevent parameter expansion.

Each of themetacharacters listed above under Definitions has special meaning to the shell and must
be quoted if they are to represent themselves. There are three quoting mechanisms: the escape
character, single quotes, and double quotes.

A non-quoted backslash (\) is theescape character. It preserves the literal value of the next character
that follows, with the exception ofnewline. If a \newline pair appears, it is treated as a line
continuation (that is, it is effectively ignored), if the backslash is non-quoted.

Enclosing characters in single quotes preserves the literal value of each character within the quotes.
A single quote may not occur between single quotes, even when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters within the quotes,
with the exception of $, ‘, and \. The characters $ and ‘ retain their special meaning within double
quotes. The backslash retains its special meaning only when followed by one of the following
characters: $, ‘, ”, \, or <newline>. A double quote may be quoted within double quotes by preceding
it with a backslash.

The special parameters * and @ have special meaning when in double quotes (see Parameters
below).

2-6 LightStream 2020 NP O/S Reference Manual

Parameters

Parameters
A parameter is an entity that stores values, somewhat like a variable in a conventional programming
language. It can be aname, a number, or one of the special characters listed below under Special
Parameters. For the shell’s purposes, avariable is a parameter denoted by aname.

A parameter is set if it has been assigned a value. The null string is a valid value. Once a variable is
set, it may be unset only by using theunset builtin command (see Shell Builtin Commands below).

A variable may be assigned to by a statement of the form

name=[value]

If value is not given, the variable is assigned the null string. Allvalues undergo tilde expansion,
parameter and variable expansion, command substitution, arithmetic expansion, and quote removal.
If the variable has its -i attribute set (see declare below in Shell Builtin Commands) thenvalue is
subject to arithmetic expansion even if the $[...] syntax does not appear. Word splitting is not
performed, with the exception of $@ as explained below under Special Parameters. Pathname
expansion is not performed.

Positional Parameters
A positional parameter is a parameter denoted by one or more digits, other than the single digit 0.
Positional parameters are assigned from the shell’s arguments when it is invoked, and may be
reassigned using theset builtin command. The positional parameters are temporarily replaced when
a shell function is executed (see Functions below).

When a positional parameter consisting of more than a single digit is expanded, it must be enclosed
in braces (see Expansion below).

Special Parameters
The shell treats several parameters specially. These parameters may only be referenced; assignment
to them is not allowed.

* Expands to the positional parameters, starting from one. When the expansion occurs within double
quotes, it expands to a single word with the value of each parameter separated by the first character of
the IFS special variable. That is, “$*” is equivalent to “$1c$2c...”, wherec is the first character of the
value of the IFS variable. If IFS is null or unset, the parameters are separated by spaces.

@ Expands to the positional parameters, starting from one. When the expansion occurs within double
quotes, each parameter expands as a separate word. That is,“$@” is equivalent to“$1” “$2” ... When
there are no positional parameters, “$@” and$@ expand to nothing (i.e. they are removed).

Expands to the number of positional parameters in decimal.

? Expands to the status of the most recently executed foreground pipeline.

- Expands to the current option flags as specified upon invocation, by theset builtin command, or those
set by the shell itself (such as the -i flag).

$ Expands to the process ID of the shell. In a () subshell, it expands to the process ID of the current shell,
not the subshell.

! Expands to the process ID of the most recently executed background (asynchronous) command.

 GNU Bash Shell Reference 2-7

Parameters

Shell Variables
The following variables are set by the shell:

0 Expands to the name of the shell or shell script. This is set at shell initialization. If bash is invoked with
a file of commands, $0 is set to the name of that file. Otherwise, it is set to the pathname used to invoke
bash, as given by argument zero.

_ Expands to the last argument to the previous command, after expansion. Also set to the full pathname of
each command executed and placed in the environment exported to that command.

PPID The process ID of the shell’s parent.

PWD The current working directory as set by thecd command.

OLDPWD The previous working directory as set by thecd command.

REPLY Set to the line of input read by theread builtin command when no arguments are
supplied.

UID Expands to the user ID of the current user.

EUID Expands to the effective user ID of the current user.

BASH Expands to the full pathname used to invoke this instance ofbash .

BASH_VERSION Expands to the version number of this instance ofbash .

SHLVL Incremented by one each time an instance ofbash is started.

RANDOM Each time this parameter is referenced, a random integer is generated. The sequence
of random numbers may be initialized by assigning a value toRANDOM. If RANDOM is
unset, it loses its special properties, even if it is subsequently reset.

SECONDS Each time this parameter is referenced, the number of seconds since shell invocation
is returned. If a value is assigned to SECONDS, the value returned upon subsequent
references is the number of seconds since the assignment plus the value assigned. If
SECONDS is unset, it loses its special properties, even if it is subsequently reset.

LINENO Each time this parameter is referenced, the shell substitutes a decimal number
representing the current sequential line number (starting with 1) within a script or
function. When not in a script or function, the value substituted is not guaranteed to
be meaningful. When in a function, the value is not the number of the source line that
the command appears on (that information has been lost by the time the function is
executed), but is an approximation of the number ofsimple commands executed in the
current function. If LINENO is unset, it loses its special properties, even if it is
subsequently reset.

OPTARG The value of the last option argument processed by the getopts builtin command (see
Shell Builtin Commands below).

OPTIND The index of the last option processed by the getopts builtin command (see Shell
Builtin Commands below).

2-8 LightStream 2020 NP O/S Reference Manual

Parameters

The following variables are used by the shell. In some cases, bash assigns a default value to a
variable; these cases are noted below.

IFS TheInternal Field Separator that is used for word splitting after
expansion and to split lines into words with the read builtin command.
The default value is:

<space><tab><newline>

PATH The search path for commands. It is a colon-separated list of
directories in which the shell looks for commands (see Command
Execution below). The default path is system-dependent, and is set by
the administrator who installs bash. A common value:

:/usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin:/etc:/usr/etc

Note that in some circumstances, however, a leading ‘.’ in PATH can
be a security hazard.

HOME The home directory of the current user; the default argument for the cd
builtin command.

CDPATH The search path for the cd builtin command. This is a colon-separated
list of directories in which the shell looks for destination directories
specified by the cd command. A sample value is:

.:~:/usr

ENV If this parameter is set when bash is executing a shell script, its value is
interpreted as a filename containing commands to initialize the shell, as
in .bashrc. The value of ENV is subjected to parameter expansion,
command substitution, and arithmetic expansion before being
interpreted as a pathname. PATH is not used to search for the resultant
pathname.

MAIL If this parameter is set to a filename and the MAILPATH variable is not
set, bash informs the user of the arrival of mail in the specified file.

MAILCHECK Specifies how often (in seconds) bash checks for mail. The default is
60 seconds. When it is time to check for mail, the shell does so before
prompting. If this variable is unset, the shell disables mail checking.

MAILPATH A colon-separated list of pathnames to be checked for mail. The
message to be printed may be specified by separating the pathname
from the message with a ‘?’. $_ stands for the name of the current
mailfile. Example:

MAILPATH=’/usr/spool/mail/bfox?”You have mail”\
:~/shell-mail?”$_ has mail!”’

Bash supplies a default value for this variable, but the location of the
user mail files that it uses is system dependent (for example,
/usr/spool/mail/$USER)

MAIL_WARNING If set, and a file that bash is checking for mail has been accessed since
the last time it was checked, the message “The mail in mailfile has
been read” is printed.

PS1 The value of this parameter is expanded (see Prompting below) and
used as the primary prompt string. The default value is “bash\$ ”.

PS2 The value of this parameter is expanded like PS1 and used as the
secondary prompt string. The default is “> ”.

 GNU Bash Shell Reference 2-9

Parameters

PS4 The value of this parameter is expanded like PS1 and the value is
printed before each command bash displays during an execution trace.
The first character of PS4 is replicated multiple times, as necessary, to
indicate multiple levels of indirection. The default is “+”.

NO_PROMPT_VARS If set, the decoded prompt string does not undergo further expansion
(see Prompting below).

HISTSIZE The number of commands to remember in the command history (see
History below).

HISTFILE The name of the file in which command history is saved. (See History
below.)

HISTFILESIZE The maximum number of lines contained in the history file. When this
variable is assigned a value, the history file is truncated, if necessary, to
contain no more than that number of lines.

OPTERR If set to the value 1, bash displays error messages generated by the
getopts builtin command (see Shell Builtin Commands below).
OPTERR is initialized to 1 each time the shell is invoked or a shell
script is executed.

PROMPT_COMMAND If set, the value is executed as a command prior to issuing each
primary prompt.

IGNOREEOF
ignoreeof

Controls the action of the shell on receipt of an EOF character as the
sole input. If set, the value is the number of consecutive EOF
characters typed before bash exits. If the variable exists but does not
have a numeric value, or has no value, the default value is 10. If it does
not exist, EOF signifies the end of input to the shell. This is only in
effect for interactive shells.

HOSTTYPE Automatically set to a string that uniquely describes the type of
machine on which bash is executing. The default is system-dependent.

TMOUT If set to a value greater than zero, the value is interpreted as the number
of seconds to wait for input after issuing the primary prompt. Bash
terminates after waiting for that number of seconds if input does not
arrive.

FCEDIT The default editor for the fc builtin command.

FIGNORE A colon-separated list of suffixes to ignore when performing filename
completion (see Readline below). A filename whose suffix matches
one of the entries in FIGNORE is excluded from the list of matched
filenames. A sample value is “.o:~”.

notify If set, bash reports terminated background jobs immediately, rather
than waiting until before printing the next primary prompt.

history_control If set to a value ofignorespace, it means don’t enter lines which begin
with a <space> on the history list. If set to a value ofignoredups, it
means don’t enter lines which match the last entered line. If unset, or if
set to any other value than those above, all lines read by the parser are
saved on the history list.

2-10 LightStream 2020 NP O/S Reference Manual

Parameters

command_oriented_histor
y

If set,bash attempts to save all lines of a multiple-line command in
the same history entry. This allows easy re-editing of multi-line
commands.

glob_dot_filenames If set,bash includes filenames beginning with a ‘. ’ in the results of
pathname expansion.

allow_null_glob_expansi
on

If set,bash allows pathname patterns which match no files (see
Pathname Expansion) to expand to a null string, rather than
themselves.

histchars The two characters which control history expansion and tokenization.
The first character is thehistory expansion character, that is, the
character which signals the start of a history expansion, normally ‘! ’.
The second character is the character which signifies that the
remainder of the line is a comment, when found as the first character of
a word.

nolinks If set, the shell does not follow symbolic links when executing
commands that change the current working directory. It uses the
physical directory structure instead. By default,bash follows the
logical chain of directories when performing commands such ascd .

hostname_completion_fil
e

Contains the name of a file in the same format as/etc/hosts that
should be read when the shell needs to complete a hostname. You can
change the file interactively; the next time you want to complete a
hostname,bash adds the contents of the new file to the already
existing database.

noclobber If set,bash does not overwrite an existing file with the>, >&, and<>
redirection operators. This variable may be overridden when creating
output files by using the redirection operator>| instead of> (see also
the-C option to theset builtin command in Shell Builtin
Commands).

auto_resume This variable controls how the shell interacts with the user and job
control. If this variable is set, single word simple commands without
redirections are treated as candidates for resumption of an existing
stopped job. There is no ambiguity allowed; if there is more than one
job beginning with the string typed, the job most recently accessed is
selected.

no_exit_on_failed_exec If this variable exists, the shell does not exit if it cannot execute the file
specified in theexec command.

cdable_vars If this is set, an argument to thecd builtin command that is not a
directory is assumed to be the name of a variable whose value is the
directory to change to.

pushd_silent If set, thepushd andpopd builtin commands do not print the current
directory stack after successful execution.

 GNU Bash Shell Reference 2-11

Expansion

Expansion
Expansion is performed on the command line after it has been split into words. There are seven kinds
of expansion performed: brace expansion, tilde expansion, parameter and variable expansion,
command substitution, arithmetic expansion, word splitting, andpathname expansion.

The order of expansions is: brace expansion, tilde expansion, parameter, variable, command, and
arithmetic substitution (done in a left-to-right fashion), word splitting, and pathname expansion.

Only brace expansion, word splitting, and pathname expansion can change the number of words of
the expansion; other expansions expand a single word to a single word. The single exception to this
is the expansion of “$@” as explained above (see Parameters).

Brace Expansion
Brace expansion is a mechanism by which arbitrary strings may be generated. This mechanism is
similar topathname expansion, but the filenames generated need not exist. Patterns to be brace
expanded take the form of an optionalpreamble, followed by a series of comma-separated strings
between a pair of braces, followed by an optionalpostamble. The preamble is appended to the
beginning of each string contained within the braces, and the postamble is then appended to the end
of each resulting string, expanding left to right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right
order is preserved. For example, a{d,c,b}e expands into ‘ade ace abe’.

Brace expansion is performed before any other expansions, and any characters special to other
expansions are preserved in the result. It is strictly textual. Bash does not apply any syntactic
interpretation to the context of the expansion or the text between the braces.

This construct is typically used as shorthand when the common prefix of the strings to be generated
is longer than in the above example:

mkdir /usr/local/src/bash/{old,new,dist,bugs}

or

chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

Brace expansion introduces a slight incompatibility with traditional versions of sh, the Bourne shell.
sh does not treat opening or closing braces specially when they appear as part of a word, and
preserves them in the output. Bash removes braces from words as a consequence of brace expansion.
For example, a word entered to sh as file{1,2} appears identically in the output. The same word is
output as file1 file2 after expansion by bash. If strict compatibility with sh is desired, start bash with
the -nobraceexpansion flag (see Options above) or disable brace expansion with the +o braceexpand
option to the set command (see Shell Builtin Commands below).

Tilde Expansion
If a word begins with a tilde character (‘~’), all of the characters preceding the first slash (or all
characters, if there is no slash) are treated as a possiblelogin name. If this login name is the null
string, the tilde is replaced with the value of the parameter HOME. If HOME is unset, the home
directory of the user executing the shell is substituted instead.

If a ‘+’ follows the tilde, the value of PWD is substituted. If a ‘-’ follows, the value of OLDPWD is
used.

Each variable assignment is checked for unquoted instances of tildes following a : or =. In these
cases, tilde substitution is also performed. Consequently, one may use pathnames with tildes in
PATH, MAILPATH, and CDPATH, and the shell exports the expanded variables.

2-12 LightStream 2020 NP O/S Reference Manual

Expansion

Parameter Expansion
The ‘$’ character introduces parameter expansion, command substitution, or arithmetic expansion.
The parameter name or symbol to be expanded may be enclosed in braces, which are optional but
serve to protect the variable to be expanded from characters immediately following it which could
be interpreted as part of the name.

In each of the cases below,word is subject to tilde expansion, parameter expansion, command
substitution, and arithmetic expansion. Bash tests for a parameter that is unset or null; omitting the
colon results in a test only for a parameter that is unset.

Command Substitution
Command substitution allows the output of a command to replace the command name. There are two
forms:

$(command)

or

‘ command‘

Bash performs the expansion by executingcommand and replacing the command substitution with
the standard output of the command, with any trailing newlines deleted.

${parameter} The value ofparameter is substituted. The braces are required whenparameter is
a positional parameter with more than one digit, or whenparameter is followed
by a character which is not to be interpreted as part of its name.

${parameter:-word} Use Default Values. Ifparameter is unset or null, the expansion ofword is
substituted. Otherwise, the value ofparameter is substituted.

${parameter:= word} Assign Default Values. Ifparameter is unset or null, the expansion ofword is
assigned toparameter. The value ofparameter is then substituted. Positional
parameters and special parameters may not be assigned to in this way.

${ parameter:? word} Display error if null or unset. Ifparameter is null or unset, the expansion ofword
(or a message to that effect ifword is not present) is written to the standard error
and the shell, if it is not interactive, exits. Otherwise, the value ofparameter is
substituted.

${ parameter:+ word} Use Alternate Value. Ifparameter is null or unset, nothing is substituted,
otherwise the expansion ofword is substituted.

${# parameter} The length in characters of the value ofparameter is substituted. Ifparameter is
* or @, the length substituted is the length of* expanded within double quotes.

${ parameter#word}

${ parameter##word} Theword is expanded to produce a pattern just as in pathname expansion. If the
pattern matches the beginning of the value ofparameter, then the expansion is
the value ofparameter with the shortest matching pattern deleted (the “#” case)
or the longest matching pattern deleted (the “##” case).

${ parameter%word}
${ parameter%%word}

Theword is expanded to produce a pattern just as in pathname expansion. If the
pattern matches a trailing portion of the value ofparameter, then the expansion is
the value ofparameter with the shortest matching pattern deleted (the “%” case)
or the longest matching pattern deleted (the “%%” case).

 GNU Bash Shell Reference 2-13

Expansion

When the old-style backquote form of substitution is used, backslash retains its literal meaning
except when followed by $, ‘, or \. When using the $(command) form, all characters between the
parentheses make up the command; none are treated specially.

Command substitutions may be nested. To nest when using the old form, escape the inner
backquotes with backslashes.

If the substitution appears within double quotes, word splitting and pathname expansion are not
performed on the results.

Arithmetic Expansion
Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the
result. The format for arithmetic expansion is:

$[expression]

Theexpression is treated as if it were within double quotes, but a double quote inside the braces is
not treated specially. All tokens in the expression undergo parameter expansion, command
substitution, and quote removal. Arithmetic substitutions may be nested.

The evaluation is performed according to the rules listed below under Arithmetic Evaluation. If
expression is invalid, bash prints a message indicating failure and no substitution occurs.

Word Splitting
The shell scans the results of parameter expansion, command substitution, and arithmetic expansion
that did not occur within double quotes forword splitting.

The shell treats each character of IFS as a delimiter, and splits the results of the other expansions
into words on these characters. If the value of IFS is exactly

<space><tab><newline>

the default, then any sequence of IFS characters serves to delimit words; otherwise each occurrence
of an IFS character is treated as a delimiter. If the value of IFS is null, no word splitting occurs. IFS
cannot be unset.

Explicit null arguments (”” or ”) are retained. Implicit null arguments, resulting from the expansion
of parameters that have no values, are removed.

Note that if no expansion occurs, no splitting is performed.

Pathname Expansion
After word splitting, bash scans eachword for the characters *, ?, and [, unless the -f flag has been
set. If one of these characters appears, then the word is regarded as apattern, and replaced with an
alphabetically sorted list of pathnames matching the pattern. If no matching pathnames are found,
and the shell variable allow_null_glob_expansion is unset, the word is left unchanged. If the variable
is set, the word is removed if no matches are found. When a pattern is used for pathname generation,
the character “.” at the start of a name or immediately following a slash must be matched explicitly,
unless the shell variable glob_dot_filenames is set. The slash character must always be matched
explicitly. In other cases, the “.” character is not treated specially.

The special pattern characters have the following meanings:

* Matches any string, including the null string.

2-14 LightStream 2020 NP O/S Reference Manual

Redirection

Quote Removal
After the preceding expansions, all unquoted occurrences of the characters \, ‘, and ” are removed.

Redirection
Before a command is executed, its input and output may beredirected using a special notation
interpreted by the shell. Redirection may also be used to open and close files for the current shell
execution environment. The following redirection operators may appear anywhere in asimple
command or may precede or follow acommand. Redirections are processed in the order they appear,
from left to right.

In the following descriptions, if the file descriptor number is omitted, and the first character of the
redirection operator is <, the redirection refers to the standard input (file descriptor 0). If the first
character of the redirection operator is >, the redirection refers to the standard output (file
descriptor 1).

The word that follows the redirection operator in the following descriptions is subjected to brace
expansion, tilde expansion, parameter expansion, command substitution, arithmetic expansion,
quote removal, and pathname expansion. If it expands to more than one word, bash reports an error.

Redirecting Input
Redirection of input causes the file whose name results from the expansion ofword to be opened for
reading on file descriptorn, or the standard input (file descriptor 0) ifn is not specified.

The general format for redirecting input is:

[n]< word

Redirecting Output
Redirection of output causes the file whose name results from the expansion ofword to be opened
for writing on file descriptorn, or the standard output (file descriptor1) if n is not specified. If the
file does not exist it is created; if it does exist it is truncated to zero size.

The general format for redirecting output is:

[n] >word

If the redirection operator is>| , then the variable noclobber is not consulted, and the file is created
regardless of the value of noclobber (see Shell Variables above).

Appending Redirected Output
Redirection of output in this fashion causes the file whose name results from the expansion of word
to be opened for appending on file descriptorn, or the standard output (file descriptor 1) ifn is not
specified. If the file does not exist it is created.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated by a minus sign denotes
a range; any character lexically between those two characters, inclusive, is matched. If the first
character following the [is a ! or a ^ then any character not enclosed is matched. A - or] may be
matched by including it as the first or last character in the set.

 GNU Bash Shell Reference 2-15

Redirection

The general format for appending output is:

[n]>> word

Redirecting Standard Output and Standard Error
Bash allows both the standard output (file descriptor 1) and the standard error output (file descriptor
2) to be redirected to the file whose name is the expansion of word with this construct.

There are two formats for redirecting standard output and standard error:

&>word

and

>&word

Of the two forms, the first is preferred. This is semantically equivalent to

>word 2>&1

Here Documents
This type of redirection instructs the shell to read input from the current source until a line containing
only word (with no trailing blanks) is seen. All of the lines read up to that point are then used as the
standard input for a command.

The format of here-documents is as follows:

<<[-] word here-document delimiter

No parameter expansion, command substitution, pathname expansion, or arithmetic expansion is
performed onword. If any characters inword are quoted, the delimiter is the result of quote removal
onword, and the lines in the here-document are not expanded. Otherwise, all lines of the
here-document are subjected to parameter expansion, command substitution, and arithmetic
expansion. In the latter case, the pair \newline is ignored, and \ must be used to quote the characters
\, $, and ‘.

If the redirection operator is <<-, then all leading tab characters are stripped from input lines and the
line containingdelimiter. This allowshere-documents within shell scripts to be indented in a natural
fashion.

Duplicating File Descriptors
The redirection operator

[n]<& word

is used to duplicate input file descriptors. Ifword expands to one or more digits, the file descriptor
denoted byn is made to be a copy of that file descriptor. If word evaluates to -, file descriptorn is
closed. Ifn is not specified, the standard input (file descriptor0) is used.

The operator

[n]>& word

is used similarly to duplicate output file descriptors. Ifn is not specified, the standard output (file
descriptor 1) is used.

2-16 LightStream 2020 NP O/S Reference Manual

Functions

Opening File Descriptors for Reading and Writing
The redirection operator

[n]<> word

causes the file whose name is the expansion ofword to be opened for both reading and writing on
file descriptorn, or as the standard input and standard output if n is not specified.

Note that the order of redirections is significant. For example, the command

ls > dirlist 2>&1

directs both standard output and standard error to the filedirlist, while the command

ls 2>&1 > dirlist

directs only the standard output to filedirlist, because the standard error was duplicated as standard
output before the standard output was redirected to dirlist.

Functions
A shell function, defined as described above under Shell Grammar, stores a series of commands for
later execution. However, functions are executed in the context of the current shell; no new process
is created to interpret them (contrast this with the execution of a shell script). When a function is
executed, the arguments to the function become the positional parameters during its execution. The
special parameter # is updated to reflect the change. Positional parameter 0 is unchanged.

Variables local to the function may be declared with the local builtin command. Ordinarily, variables
and their values are shared between the function and its caller.

If the builtin command return is executed in a function, the function completes and execution
resumes with the next command after the function call. When a function completes, the values of
the positional parameters and the special parameter # are restored to the values they had prior to
function execution.

Function names may be listed with the -f option to the declare or typeset builtin commands.
Functions may be exported so that subshells automatically have them defined with the -f option to
the export builtin.

Functions may be recursive. No limit is imposed on the number of recursive calls.

Aliases
The shell maintains a list ofaliases that may be set and unset with the alias and unalias builtin
commands. The first word of each command is checked to see if it has an alias. If so, that word is
replaced by the text of the alias. The alias name and the replacement text may contain any valid shell
input, including themetacharacters listed above. The first word of the replacement text is tested for
aliases, but a word that is identical to an alias being expanded is not expanded a second time. This
means that one may alias ls to ls -F, for instance, and bash does not try to recursively expand the
replacement text. If the last character of the alias value is ablank, then the next command word
following the alias is also checked for alias expansion.

Aliases are created and listed with the alias command, and removed with the unalias command.

There is no mechanism for using arguments in the replacement text, as in csh. If arguments are
needed, a shell function should be used.

 GNU Bash Shell Reference 2-17

Job Control

The rules concerning the definition and use of aliases are somewhat confusing. Bash always reads
at least one complete line of input before executing any of the commands on that line. Aliases are
expanded when a command is read, not when it is executed. Therefore, an alias definition appearing
on the same line as another command does not take effect until the next line of input is read. This
means that the commands following the alias definition on that line are not affected by the new alias.
This behavior is also an issue when functions are executed. Aliases are expanded when the function
definition is read, not when the function is executed, because a function definition is itself a
compound command. As a consequence, aliases defined in a function are not available until after
that function is executed. To be safe, always put alias definitions on a separate line, and do not use
alias in compound commands.

Aliases are not expanded when the shell is not interactive.

Note that for almost every purpose, aliases are superseded by shell functions.

Job Control
Job control refers to the ability to selectively stop (suspend) the execution of processes and continue
(resume) their execution at a later point. A user typically employs this facility via an interactive
interface supplied jointly by the system’s terminal driver and bash.

The shell associates ajob with each pipeline. It keeps a table of currently executing jobs, which may
be listed with the jobs command. When bash starts a job asynchronously (in thebackground), it
prints a line that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the single process in the job is
25647. Bash uses thejob abstraction as the basis for job control.

To facilitate the implementation of the user interface to job control, the system maintains the notion
of acurrent terminal process group ID. Members of this process group (processes whose process
group ID is equal to the current terminal process group ID) receive keyboard-generated signals such
as SIGINT. These processes are said to be in theforeground. Background processes are those whose
process group ID differs from the terminal’s; such processes are immune to keyboard-generated
signals. Only foreground processes are allowed to read from or write to the terminal. Background
processes which attempt to read from (write to) the terminal are sent a SIGTTIN (SIGTTOU) signal
by the terminal driver, which, unless caught, causes the process to stop.

If the operating system on which bash is running supports job control, bash allows you to use it.
Typing thesuspend character (typically ^Z, Control-Z) while a process is running causes that
process to be stopped and returns you to bash. Typing thedelayed suspend character (typically ^Y,
Control-Y) causes the process to be stopped when it attempts to read input from the terminal, and
control to be returned to bash. You may then manipulate the state of this job, using the bg command
to continue it in the background, the fg command to continue it in the foreground, or the kill
command to kill it. A ^Z takes effect immediately, and has the additional side effect of causing
pending output and typeahead to be discarded.

There are a number of ways to refer to a job in the shell. The character % introduces a job name. Job
numbern may be referred to as %n. A job may also be referred to using a prefix of the name used to
start it, or using a substring that appears in its command line. For example, %ce refers to a stopped
ce job. If a prefix matches more than one job, bash reports an error. Using %?ce, on the other hand,
would refer to any job containing the string ce in its command line. If the substring matches more
than one job, bash reports an error. The symbols %% and %+ refer to the shell’s notion of thecurrent
job, which is the last job stopped while it was in the foreground. Theprevious job may be referenced
using %-. In output pertaining to jobs (e.g. the output of the jobs command), the current job is always
flagged with a +, and the previous job with a -.

2-18 LightStream 2020 NP O/S Reference Manual

Signals

Simply naming a job can be used to bring it into the foreground: %1 is a synonym for “fg %1”,
bringing job 1 from the background into the foreground. Similarly, “%1 &” resumes job 1 in the
background, equivalent to “bg %1”.

The shell learns immediately whenever a job changes state. Normally, bash waits until it is about to
print a prompt before reporting changes in a job’s status so as to not interrupt any other output. If the
variable notify is set, bash reports such changes immediately. (See also the -o notify option to the set
builtin command under Shell Builtin Commands.)

If you attempt to exit bash while jobs are stopped, the shell prints a message warning you. You may
then use the jobs command to inspect their status. If you do this, or try to exit again immediately,
you are not warned again, and the stopped jobs are terminated.

Signals
When bash is interactive, it ignores SIGTERM (so thatkill 0 does not kill an interactive shell), and
SIGINT is caught and handled (so thatwait is interruptible). In all cases, bash ignores SIGQUIT. If
job control is in effect, bash ignores SIGTTIN, SIGTTOU, and SIGTSTP.

Synchronous jobs started by bash have signals set to the values inherited by the shell from its parent.
Background jobs (jobs started with&) ignore SIGINT and SIGQUIT. Commands run as a result of
command substitution ignore the keyboard-generated job control signals SIGTTIN, SIGTTOU, and
SIGTSTP.

Command Execution
After a command has been split into words, if it results in a simple command and an optional list of
arguments, the following actions are taken.

If the command name contains no slashes, the shell attempts to locate it. If there exists a shell
function by that name, that function is invoked as described above in Functions. If the name does
not match a function, the shell searches for it in the list of shell builtins. If a match is found, that
builtin is invoked.

If the name is neither a shell function nor a builtin, and contains no slashes, bash searches each
element of the PATH for a directory containing an executable file by that name. If the search is
unsuccessful, the shell prints an error message and returns a nonzero exit status.

If the search is successful, or if the command name contains one or more slashes, the shell executes
the named program. Argument 0 is set to the name given, and the remaining arguments to the
command are set to the arguments given, if any.

If this execution fails because the file is not in executable format, and the file is not a directory, it is
assumed to be ashell script, a file containing shell commands. A subshell is spawned to execute it.
This subshell reinitializes itself, so that the effect is as if a new shell had been invoked to handle the
script, with the exception that the locations of commands remembered by the parent (see hash below
under Shell Builtin Commands) are retained by the child.

If the program is a file beginning with #!, the remainder of the first line specifies an interpreter for
the program. The shell executes the specified interpreter on operating systems that do not handle this
executable format themselves. The arguments to the interpreter consist of a single optional argument
following the interpreter name on the first line of the program, followed by the name of the program,
followed by the command arguments, if any.

 GNU Bash Shell Reference 2-19

Environment

Environment
When a program is invoked it is given an array of strings called theenvironment. This is a list of
name-value pairs, of the formname=value.

The shell allows you to manipulate the environment in several ways. On invocation, the shell scans
its own environment and creates a parameter for each name found, automatically marking it for
export to child processes. Executed commands inherit the environment. Theexport anddeclare -x
commands allow parameters and functions to be added to and deleted from the environment. If the
value of a parameter in the environment is modified, the new value becomes part of the environment,
replacing the old. The environment inherited by any executed command consists of the shell’s initial
environment, whose values may be modified in the shell, less any pairs removed by theunset
command, plus any additions, using theexport anddeclare -x commands.

The environment for anysimple command or function may be augmented temporarily by prefixing
it with parameter assignments, as described above in Parameters. These assignment statements
affect only the environment seen by that command.

If the -k flag is set (see theset builtin command under Shell Builtin Commands), thenall parameter
assignments are placed in the environment for a command, not just those that precede the command
name.

Exit Status
For the purposes of the shell, a command which exits with a zero exit status has succeeded. An exit
status of zero indicates success. A non-zero exit status indicates failure. When a command
terminates on a fatal signal, bash uses the value of 128+signal as the exit status.

Bash itself returns the exit status of the last command executed, unless a syntax error occurs, in
which case it exits with a non-zero value. See also the exit builtin command under Shell Builtin
Commands.

Prompting
When executing interactively, bash displays the primary prompt PS1 when it is ready to read a
command, and the secondary prompt PS2 when it needs more input to complete a command. Bash
allows the prompt to be customized by inserting a number of backslash-escaped special characters
that are decoded as follows:

\t the time

\d the date

\n CRLF

\s the name of the shell, the basename of$0 (the portion following the final slash)

\w the current working directory

\W the basename of the current working directory

\u the username of the current user

\h the hostname

\# the command number of this command

2-20 LightStream 2020 NP O/S Reference Manual

Readline

After the string is decoded, if the variable NO_PROMPT_VARS is not set, it is expanded via
parameter expansion, command substitution, arithmetic expansion, and word splitting.

Readline
This is the library that handles reading input when using an interactive shell, unless the
-nolineediting option is given. By default, the line editing commands are similar to those ofemacs.
A vi-style line editing interface is also available.

In this section, theemacs-style notation is used to denote keystrokes. Control keys are denoted by
C-key, e.g. C-n means Control-N. Similarly, meta keys are denoted by M-key, so M-x means Meta-X.
(On keyboards without a meta key, M-x means ESCx, i.e. press the Escape key then thex key. The
combination M-C-x means ESC-Control-x, or press the Escape key then hold the Control key while
pressing thex key.)

The default key-bindings may be changed with an ~/.inputrc file. Other programs that use this library
may add their own commands and bindings.

For example, placing

M-Control-u: universal-argument

or

C-Meta-u: universal-argument

into the ~/.inputrc would make M-C-u execute the command universal-argument.

The following symbolic character names are recognized:

RUBOUT, DEL, ESC, NEWLINE, SPACE, RETURN, LFD, TAB.

Placing

set editing-mode vi

into a ~/.inputrc file causes bash to start with a vi-like editing mode. The editing mode may be
switched during interactive use by using the -o option to the set builtin command (see under Shell
Builtin Commands below).

You can have readline use a single line for display, scrolling the input between the two borders by
placing

set horizontal-scroll-mode On

into a ~/.inputrc file.

The following is a list of the names of the commands and the default key-strokes to get them.

\! the history number of this command

\$ if the effectiveUID is 0, a # , otherwise a$

\nnn character code in octal

\\ a backslash

 GNU Bash Shell Reference 2-21

Readline

Commands for Moving

Commands for Manipulating the History

beginning-of-line C-a Move to the start of the current line.

end-of-line C-e Move to the end of the line.

forward-char C-f Move forward a character.

backward-char C-b Move back a character.

forward-word M-f Move forward to the end of the next word.

backward-word M-b Move back to the start of this, or the previous, word.

clear-screen C-l Clear the screen leaving the current line at the top of the
screen.

accept-line Newline
or
Return

Accept the line regardless of where the cursor is. If this
line is non-empty, add it to the history list according to
the state of the history_control variable. If this line was
a history line, then restore the history line to its original
state.

previous-history C-p Fetch the previous command from the history list,
moving back in the list.

next-history C-n Fetch the next command from the history list, moving
forward in the list.

beginning-of-history M-< Move to the first line in the history, the first line entered.

end-of-history M-> Move to the end of the input history, i.e., the line you
are entering.

reverse-search-history C-r Search backward starting at the current line and moving
‘up’ through the history as necessary. This is an
incremental search.

forward-search-history C-s Search forward starting at the current line and moving
‘down’ through the history as necessary.

shell-expand-line M-C-e Expand the line the way the shell does when it reads it.
This performs alias and history expansion. See History
below.

insert-last-argument M-. or M-_ Insert the last argument to the previous command (the
last word on the previous line).

operate-and-get-next C-O Accept the current line for execution and fetch the next
line relative to the current line from the history file for
editing.

2-22 LightStream 2020 NP O/S Reference Manual

Readline

Commands for Changing Text

Killing and Yanking

delete-char C-d Delete the character under the cursor. If the cursor is at the
beginning of the line, and there are no characters in the line,
and the last character typed was notC-d , then returnEOF.

backward-delete-char Rubout Delete the character behind the cursor. A numeric arg says to
kill the characters instead of deleting them.

quoted-insert C-q
or C-v

Add the next character that you type to the line verbatim. This
is how to insert characters like C-q, for example.

tab-insert M-TAB Insert atab character.

self-insert a , b, A, 1,
! , ...

Insert the character typed.

transpose-chars C-t Drag the character before point forward over the character at
point. Point moves forward as well. If point is at the end of the
line, then transpose the two characters before point. Negative
arguments don’t work.

transpose-words M-t Drag the word behind the cursor past the word in front of the
cursor moving the cursor over that word as well.

upcase-word M-u Uppercase the current (or following) word. With a negative
argument, do the previous word, but do not move point.

downcase-word M-l Lowercase the current (or following) word. With a negative
argument, do the previous word, but do not move point.

capitalize-word M-c Capitalize the current (or following) word. With a negative
argument, do the previous word, but do not move point.

kill-line C-k Kill the text from the current cursor position to the end of the line.
This saves the killed text on the kill-ring (see below).

backward-kill-line Kill backward to the beginning of the line. This is normally
unbound, in favor of unix-line-discard, which emulates the
behavior of the standard Unix terminal driver.

kill-word M-d Kill from the cursor to the end of the current word, or if between
words, to the end of the next word.

backward-kill-word M-Rubout Kill the word behind the cursor.

unix-line-discard C-u Do what C-u used to do in Unix line input. We save the killed text
on the kill-ring, though.

unix-word-rubout C-w Do what C-w used to do in Unix line input. The killed text is
saved on the kill-ring. This is different than backward-kill-word
because the word boundaries differ.

yank C-y Yank the top of the kill ring into the buffer at point.

 GNU Bash Shell Reference 2-23

Readline

Arguments

Completing

Miscellaneous

yank-pop M-y Rotate the kill-ring, and yank the new top. Only works following
yank or yank-pop.

digit-argument M-0, M-1, ...,
M--

Add this digit to the argument already accumulating, or start
a new argument. M-- starts a negative argument.

universal-argument Do what C-u does in emacs. By default, this is not bound to a
key.

complete TAB Attempt to perform completion on the text before point.
Bash attempts completion treating the text as a variable
(if the text begins with $), username (if the text begins
with ~), hostname (if the text begins with @), or
command (including aliases and functions) in turn. If
none of these produces a match, filename completion is
attempted.

possible-completions M-? List the possible completions of the text before point.

complete-filename M-/ Attempt filename completion on the text before point.

possible-filename-completion
s

C-x / List the possible completions of the text before point,
treating it as a filename.

complete-username M-~ Attempt completion on the text before point, treating it
as a username.

possible-username-completion
s

C-x ~ List the possible completions of the text before point,
treating it as a username.

complete-variable M-$ Attempt completion on the text before point, treating it
as a shell variable.

possible-variable-completion
s

C-x $ List the possible completions of the text before point,
treating it as a shell variable.

complete-hostname M-@ Attempt completion on the text before point, treating it
as a hostname.

possible-hostname-completion
s

C-x @ List the possible completions of the text before point,
treating it as a hostname.

abort C-g Abort the current editing command and ring the terminal’s bell.

do-uppercase-version M-a , M-b, ... Run the command that is bound to the uppercased key.

prefix-meta ESC Metafy the next character typed. This is for people without a
meta key. ESC f is equivalent to Meta-f.

2-24 LightStream 2020 NP O/S Reference Manual

History

History
The shell supports a history expansion feature that is similar to the history expansion in csh. This
section describes what syntax features are available.

History expansion is performed immediately after a complete line is read, before the shell breaks it
into words. It takes place in two parts. The first is determining which line from the previous history
to use during substitution. The second is to select portions of that line for inclusion into the current
one. The line selected from the previous history is theevent, and the portions of that line that are
acted upon arewords. The line is broken into words in the same fashion as when reading input, so
that several English, or Unix, words surrounded by quotes are considered as one word. Only
backslash (\) can quote the history escape character, which is ! by default.

Event Designators
An event designator is a reference to a command line entry in the history list.

Word Designators
A : separates the event specification from the word designator. It can be omitted if the word
designator begins with a ^, $, *, or %. Words are numbered from the beginning of the line, with the
first word being denoted by a 0 (zero).

undo C-_ Incremental undo, separately remembered for each line.

revert-line M-r Undo all changes made to this line. This is like typing the undo
command enough times to get back to the beginning.

display-shell-versio
n

C-x C-v Display version information about the current instance of bash.

emacs-editing-mode C-e When in vi editing mode, this causes a switch to emacs editing
mode.

vi-editing-mode M-C-j or
M-C-m

When in emacs editing mode, this causes a switch to vi editing
mode.

! Start a history substitution, except when followed by a <space>, <tab>, <newline>, =, or (.

!! Refer to the previous command. This is a synonym for ‘!-1’.

! n Refer to command linen.

!- n Refer to the current command line minusn.

! string Refer to the most recent command starting withstring.

!? string[?] Refer to the most recent command containingstring.

The entire command line typed so far. This means the current command, not the previous
command, so it really isn’t a word designator, and doesn’t belong in this section.

0 (zero) The zeroth word. For the shell, this is the command word.

n Thenth word.

 GNU Bash Shell Reference 2-25

Arithmetic Evaluation

Modifiers
After the optional word designator, you can add a sequence of one or more of the following
modifiers, each preceded by a ‘:’.

Arithmetic Evaluation
The shell allows arithmetic expressions to be evaluated, under certain circumstances (see Arithmetic
Expansion, and see the let builtin command under Shell Builtin Commands). Evaluation is done in
long integers with no check for overflow, though division by 0 is trapped and flagged as an error.
The following list of operators is grouped into levels of equal-precedence operators. The levels are
listed in order of decreasing precedence.

Shell variables are allowed as operands; parameter expansion is performed before the expression is
evaluated. The value of a parameter is coerced to a long integer within an expression. A shell
variable need not have its integer attribute turned on to be used in an expression.

Operators are evaluated in order of precedence. Subexpressions in parentheses are evaluated first
and may override the precedence rules above.

^ The first argument. That is, word 1.

$ The last argument.

% The word matched by the most recent ‘?string?’ search.

x- y A range of words; ‘-y’ abbreviates ‘0-y’.

* All of the words but the zeroth. This is a synonym for ‘1-$’. It is not an error to use * if there is
just one word in the event; the empty string is returned in that case.

h Remove a trailing pathname component, leaving only the head.

r Remove a trailing suffix of the form ”.xxx”, leaving the basename.

e Remove all but the suffix.

t Remove all leading pathname components, leaving the tail.

p Print the new command but do not execute it. This takes effect immediately, so it should be the last
specifier on the line.

- Unary minus

! Logical NOT

* / % Multiplication, division, remainder

+ - Addition, subtraction

<= >= < > Comparison

== != Equality and inequality

= Assignment

2-26 LightStream 2020 NP O/S Reference Manual

Shell Builtin Commands

Shell Builtin Commands
• : [arguments]

No effect; the command does nothing beyond expandingarguments and performing any
specified redirections. A zero exit code is returned.

• . filename
sourcefilename
Read and execute commands fromfilename in the current shell environment and return the exit
status of the last command executed fromfilename. Pathnames in PATH are used to find the
directory containingfilename, if filename does not contain a slash. The file searched for in PATH
need not be executable. The current directory is searched if no file is found in PATH. The return
status is the status of the last command exited within the script (true if no commands are
executed), and false iffilename is not found.

• alias [name[=value] ...] alias
with no arguments prints the list of aliases in the formname=value on standard output. When
arguments are supplied, an alias is defined for eachname whosevalue is given. A trailing space
in value causes the next word to be checked for alias substitution when the alias is expanded. alias
returns true unless aname is given for which no alias has been defined.

• bg [jobspec]
Placejobspec in the background, as if it had been started with &. Ifjobspec is not present, the
shell’s notion of thecurrent job is used.

• bind [-lvd] [-q name]
bind -f filename
bind keyseq:function-name
Display current readline key and function bindings, or bind a key sequence to a readline function
or macro. The binding syntax accepted is identical to that of .inputrc, but each binding must be
passed as a separate argument; e.g.

’”\C-x\C-r”: re-read-init-file’

Options, if supplied, have the following meanings:

• break [n]
Exit from within a for, while, or until loop. Ifn is specified, breakn levels.n must be >= 1. Ifn
is greater than the number of enclosing loops, all enclosing loops are exited. The return value is
0 unless the shell is not executing a loop when break is executed.

• builtin [shell-builtin [arguments]]
Execute the specified shell builtin command, passing itarguments, and return its exit status. This
is useful when you wish to define a function whose name is the same as a shell builtin, but need
the functionality of the builtin within the function itself. The cd builtin is commonly redefined
this way.

-l List the names of all readline functions

-v List current function names and bindings

-d Dump function names and bindings in such a way that they can be re-read

-f filename Read key bindings fromfilename

-q function Query about which keys invoke the namedfunction

 GNU Bash Shell Reference 2-27

Shell Builtin Commands

• cd [dir]Change the current directory todir.
The variable HOME is the defaultdir. The variable CDPATH defines the search path for the
directory containingdir. Alternative directory names are separated by a colon (:). A null
directory name in CDPATH is the same as the current directory, i.e. “.”. If dir begins with a slash
(/), then CDPATH is not used. An argument of - is equivalent to $OLDPWD. The return value is
true if the directory was successfully changed; false otherwise.

• command [-p] [command [arg ...]]
Runcommand with args suppressing the normal shell function lookup. Only builtin commands
or commands found in the PATH are executed. If the -p option is given, the search forcommand
is performed using a default value for PATH that is guaranteed to find all of the standard utilities.
An argument of -- disables option checking for the rest of the arguments. If an error occurred or
command cannot be found, the exit status is 127. Otherwise, the exit status of the command
builtin is the exit status ofcommand.

• continue [n]
Resume the next iteration of the enclosing for, while, or until loop. Ifn is specified, resume at the
nth enclosing loop.n must be >= 1. Ifn is greater than the number of enclosing loops, the last
enclosing loop (the ‘top-level’ loop) is resumed. The return value is 0 unless the shell is not
executing a loop when continue is executed.

• declare [-frxi] [name[=value]]
typeset [-frxi] [name[=value]]
Declare variables and/or give them attributes. If nonames are given, then display the values of
variables instead.

• dirs [-l]
Display the list of currently remembered directories. Directories are added to the list with the
pushd command; the popd command moves back up through the list. The -l option produces a
longer listing; the default listing format uses a tilde to denote the home directory.

• echo [-ne] [arg ...]
Output theargs, separated by spaces. If-n is specified, the trailing newline is suppressed. If the
-e option is given, interpretation of the following backslash-escaped characters is enabled:

-f Use function names only

-r Makenames readonly. These names cannot then be assigned values by subsequent assignment
statements.

-x Mark names for export to subsequent commands via the environment.

-i The variable is treated as an integer; arithmetic evaluation (see Arithmetic Expansion) is performed
when the variable is assigned a value.

 Using ‘+’ instead of ‘-’ turns off the attribute instead. When used in a function, makesnames local, as with the
local command.

\a Alert (bell)

\b Backspace

\c Suppress trailing newline

\f Form feed

\n New line

2-28 LightStream 2020 NP O/S Reference Manual

Shell Builtin Commands

• enable [-n] [name ...] Enable and disable builtin shell commands. This allows the execution of a
disk command which has the same name as a shell builtin without specifying a full pathname. If
-n is used, eachname is disabled; otherwise,names are enabled. For example, to use the test
found in PATH instead of the shell builtin version, type enable -n test.

• eval [arg ...] Theargs are read and concatenated together into a single command. This command
is then read and executed by the shell, and its exit status is returned as the value of theeval
command. If there are noargs, or only null arguments, eval returns true.

• exec [[-] command [arguments]] If command is specified, it replaces the shell. No new process is
created. Thearguments become the arguments tocommand. If the first argument is-, the shell
places a dash in the zeroth arg passed tocommand. This is whatlogin does. If the file cannot be
executed for some reason, the shell exits, unless the shell variable no_exit_on_failed_exec exists.
If command is not specified, any redirections take effect in the current shell.

• exit [n]

bye [n] Cause the shell to exit with a status ofn. If n is omitted, the exit status is that of the last
command executed. A trap on EXIT is executed before the shell terminates.

• export [-npf] [name[=word]] ... The suppliednames are marked for automatic export to the
environment of subsequently executed commands. If the-f option is given, thenames refer to
functions. If nonames are given, or if the-p option is supplied, a list of all names that are exported
in this shell is printed. The-n option causes the export property to be removed from the named
variables. An argument of-- disables option checking for the rest of the arguments.export returns
an exit status of true unless an illegal option is encountered.

• fc [-e ename] [-nlr] [first] [last]
fc -s [pat=rep] [cmd]
Fix Command. In the first form, a range of commands fromfirst to last is selected from the history
list. First andlast may be specified as a string (to locate the last command beginning with that
string) or as a number (an index into the history list, where a negative number is used as an offset
from the current command number). Iflast is not specified it is set to the current command for
listing (so that fc -l -10 prints the last 10 commands) and tofirst otherwise. Iffirst is not specified
it is set to the previous command for editing and -16 for listing.

The-n flag suppresses the command numbers when listing. The-r flag reverses the order of the
commands. If the -l flag is given, the commands are listed on standard output. Otherwise, the
editor given byename is invoked on a file containing those commands. Ifename is not given, the
value of the FCEDIT variable is used, and the value of EDITOR if FCEDIT is not set. If neither
variable is set,vi is used. When editing is complete, the edited commands are echoed and
executed.

In the second form, the command is re-executed after the substitutionold=new is performed. A
useful alias to use with this is “r=fc -s”, so that typing “r cc” runs the last command beginning
with “cc” and typing “r ” re-executes the last command.

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\nnn The character whose ASCII code isnnn (octal)

 GNU Bash Shell Reference 2-29

Shell Builtin Commands

• fg [jobspec]
Place jobspec in the foreground, and make it the current job. Ifjobspec is not present, the shell’s
notion of thecurrent job is used.

• getoptsoptstring name[args]
getopts is used by shell procedures to parse positional parameters.optstring contains the option
letters to be recognized; if a letter is followed by a colon, the option is expected to have an
argument, which should be separated from it by white space. Each time it is invoked,getopts
places the next option in the shell variablename, initializing name if it does not exist, and the
index of the next argument to be processed into the variable OPTIND. OPTIND is initialized to
1 each time the shell or a shell script is invoked. When an option requires an argument,getopts
places that argument into the variable OPTARG. The shell does not reset OPTIND automatically;
it must be manually reset between multiple calls togetopts within the same shell invocation if a
new set of parameters is to be used.

getopts can report errors in two ways. If the first character ofoptstring is a colon,silent error
reporting is used. In normal operation diagnostic messages are printed when illegal options or
missing option arguments are encountered. If the variable OPTERR is set to 0, no error message
is displayed, even if the first character ofoptstring is not a colon.

If an illegal option is seen,getopts places? into name and, if not silent, prints an error message
and unsets OPTARG. If getopts is silent, the option character found is placed in OPTARG and no
diagnostic message is printed.

If a required argument is not found, andgetopts is not silent, a question mark (?) is placed inname,
OPTARG is unset, and a diagnostic message is printed. Ifgetopts is silent, then a colon (:) is
placed inname and OPTARG is set to the option character found.

getopts normally parses the positional parameters, but if more arguments are given inargs, getopts
parses those instead.getopts returns true if an option, specified or unspecified, is found. It returns
false if the end of options is encountered or an error occurs.

• hash [-r] [name]
For eachname, the full pathname of the command is determined and remembered. The-r option
causes the shell to forget all remembered locations. If no arguments are given, information about
remembered commands is printed. An argument of-- disables option checking for the rest of the
arguments. The return status is true unless aname is not found or an illegal option is supplied.

• help [pattern]
Display helpful information about builtin commands. Ifpattern is specified, help gives detailed
help on all commands matchingpattern; otherwise a list of the builtins is printed.

• history [n]
history -rwan [filename]
With no options, display the command history list with line numbers. Lines listed with with a*
have been modified. An argument ofn lists only the lastn lines. If a non-option argument is
supplied, it is used as the name of the history file; if not, the value of HISTFILE (default
~/.bash_history) is used. Options, if supplied, have the following meanings:

-a Append the “new” history lines (history lines entered since the beginning of the current bash
session) to the history file

-n Read the history lines not already read from the history file into the current history list. These
are lines appended to the history file since the beginning of the current bash session.

-r read the contents of the history file and use them as the current history

-w write the current history to the history file, overwriting the history file’s contents.

2-30 LightStream 2020 NP O/S Reference Manual

Shell Builtin Commands

• jobs [-lnp] [jobspec ...]
jobs -x command [args ...]
The first form lists the active jobs. The-l option lists process IDs in addition to the normal
information; the-p option lists only the process ID of the job’s process group leader. The-n
option displays only jobs that have changed status since last notified. Ifjobspec is given, output
is restricted to information about that job.

If the -x option is supplied, jobs replaces anyjobspec found incommand or args with the
corresponding process group ID, and executescommand passing itargs.

• kill [-s sigspec | -sigspec] [pid | jobspec] ...
kill -l [signum]
Send the signal named bysigspec to the processes named bypid or jobspec. sigspec is either a
signal name such as SIGKILL or a signal number. Ifsigspec is a signal name, the name is case
insensitive and may be given with or without the SIG prefix. Ifsigspec is not present, then
SIGTERM is assumed. An argument of -l lists the signal names. If any arguments are supplied
when -l is given, the names of the specified signals are listed. An argument of -- disables option
checking for the rest of the arguments. kill returns true if at least one signal was successfully sent,
or false if an error occurs.

• let arg [arg ...]
Eacharg is an arithmetic expression to be evaluated (see Arithmetic Expansion). If the lastarg
evaluates to 0,let returns 1; 0 is returned otherwise.

• local [name[=value]]
Create a local variable namedname, and assign itvalue. Whenlocal is used within a function, it
causes the variablename to have a visible scope restricted to that function and its children. With
no operands,local writes a list of local variables to the standard output. It is an error to uselocal
when not within a function.

• logout
Exit a login shell.

• popd [+/-n]
Removes entries from the directory stack. With no arguments, removes the top directory from
the stack, and performs acd to the new top directory.

If the variable pushd_silent is unset and thepopd command is successful, adirs is performed as
well.

• pushd dir
pushd +/-n
Adds a directory to the top of the directory stack, or rotates the stack, making the new top of the
stack the current working directory. With no arguments, exchanges the top two directories.

+n Removes thenth entry counting from the left of the list shown bydirs, starting with zero. For
example:popd +0 removes the first directory,popd +1 the second.

-n Removes thenth entry counting from the right of the list shown bydirs, starting with zero. For
example:popd -0 removes the last directory,popd -1 the next to last.

+n Rotates the stack so that thenth directory (counting from the left of the list shown bydirs) is at
the top.

-n Rotates the stack so that thenth directory (counting from the right) is at the top.

dir Addsdir to the directory stack at the top, making it the new current working directory.

 GNU Bash Shell Reference 2-31

Shell Builtin Commands

If the variable pushd_silent is not set and thepushd command is successful, adirs is performed
as well.

• pwd
Print the absolute pathname of the current working directory. The path printed contains no
symbolic links (but see the description of nolinks under Shell Variables above).

• read [-r] [name ...]
One line is read from the standard input, and the first word is assigned to the first name, the
second word to the second name, and so on, with leftover words assigned to the last name. Only
the characters in IFS are recognized as word delimiters. The return code is zero, unless
end-of-file is encountered. If the-r option is given, a backslash-newline pair is not ignored, and
the backslash is considered to be part of the line.

• readonly [-pf] [name ...]
The given names are marked readonly and the values of these names may not be changed by
subsequent assignment. If the -f option is supplied, the functions corresponding to the names are
so marked. If no arguments are given, or if the -p option is supplied, a list of all readonly names
is printed. An argument of -- disables option checking for the rest of the arguments.

• return [n]
Causes a function to exit with the return value specified byn. If n is omitted, the return status is
that of the last command executed in the function body. If used outside a function, but during
execution of a script by the . (source) command, it causes the shell to stop executing that script
and return eithern or the exit status of the last command executed within the script as the exit
status of the script.

• set [-aefhknotuvxldCH] [arg ...]

-a Automatically mark variables which are modified or created for export to the environment
of subsequent commands.

-e Exit immediately if asimple-command (see Shell Grammar above) exits with a non-zero
status. The shell does not exit if the command that fails is part of anuntil or while loop,
part of anif statement, part of a&& or || list, or if the command’s return value is being
inverted by means of!.

-f Disable pathname expansion.

-h Locate and remember function commands as functions are defined. Function commands
are normally looked up when the function is executed.

-k All keyword arguments are placed in the environment for a command, not just those that
precede the command name.

-m Monitor mode. Job control is enabled. This flag is on by default for interactive shells on
systems that support it (see Job Control above). Background processes run in a separate
process group and a line containing their exit status is printed upon their completion.

-n Read commands but do not execute them. This may be used to check a shell script for
syntax errors. This is ignored for interactive shells.

-o option Theoption can be one of the following:

allexport Same as -a.

braceexpand The shell performs curly brace expansion (see Brace Expansion above).
This is on by default.

2-32 LightStream 2020 NP O/S Reference Manual

Shell Builtin Commands

emacs Use an emacs-style command line editing interface.

errexit Same as -e.

histexpand Same as -H.

ignoreeof The effect is as if the shell command IGNOREEOF=10 had been
executed (see Shell Variables above).

monitor Same as -m.

noclobber Same as -C.

noexec Same as -n.

noglob Same as -f.

nohash Same as -d.

notify The effect is as if the shell command notify= had been executed (see
Shell Variables above).

nounset Same as -u.

verbose Same as -v.

vi Use a vi-style command line editing interface.

xtrace Same as -x.

If no option-name is supplied, the values of the current options are printed.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when performing parameter expansion. If expansion is
attempted on an unset variable, the shell prints an error message, and, if not interactive,
exits with a non-zero status.

-v Print shell input lines as they are read.

-x After expanding each simple-command, bash displays the expanded value of PS4,
followed by the command and its expanded arguments.

-l Save and restore the binding of name in a for name [in word] command (see Shell
Grammar above).

-d Disable the hashing of commands that are looked up for execution. Normally, commands
are remembered in a hash table, and once found, do not have to be looked up again.

-C The effect is as if the shell command noclobber= had been executed (see Shell Variables
above).

-H Enable ! style history substitution. This flag is on by by default.

-- If no arguments follow this flag, then the positional parameters are unset. Otherwise, the
positional parameters are set to the args, even if some of them begin with a -.

- Signal the end of options, cause all remaining args to be assigned to the positional
parameters. The -x and -v options are turned off. If there are no args, the positional
parameters remain unchanged.

 GNU Bash Shell Reference 2-33

Shell Builtin Commands

Using+ rather than- causes these flags to be turned off. The flags can also be specified as options
to an invocation of the shell. The current set of flags may be found in$-. After the option
arguments are processed, the remaining args are treated as values for the positional parameters
and are assigned, in order, to $1, $2, ... $9. If no options or args are supplied, all shell variables
are printed. The return status is always true unless an illegal option is encountered.

• shift [n]
The positional parameters fromn+1 ... are renamed to $1 Ifn is not given, it is assumed to be
1. The exit status is 1 ifn is greater than $#; otherwise 0.

• suspend [-f]
Suspend the execution of this shell until it receives a SIGCONT signal. The-f option says not to
complain if this is a login shell; just suspend anyway.

• test expr
[expr]
Return a status of 0 (true) or 1 (false) depending on the evaluation of the conditional expression
expr. Expressions may be unary or binary. Unary expressions are often used to examine the status
of a file. There are string operators and numeric comparison operators as well.

-b file True if file exists and is block special.

-c file True if file exists and is character special.

-d file True if file exists and is a directory.

-efile True if file exists

-f file True if file exists and is a regular file.

-g file True if file exists and is set-group-id.

-k file True if file has its “sticky” bit set.

-L file True if file exists and is a symbolic link.

-p file True if file exists and is a named pipe.

-r file True if file exists and is readable.

-s file True if file exists and has a size greater than zero.

-Sfile True if file exists and is a socket.

-t [fd] True if fd is opened on a terminal. Iffd is omitted, it defaults to 1 (standard
output).

-u file True if file exists and its set-user-id bit is set.

-w file True if file exists and is writeable.

-x file True iffile exists and is executable.

-O file True iffile exists and is owned by the effective user ID.

-G file True iffile exists and is owned by the effective group ID.

file1 -nt file2 True if file1 is newer (according to modification date) thanfile2.

file1 -ot file2 True if file1 is older thanfile2.

2-34 LightStream 2020 NP O/S Reference Manual

Shell Builtin Commands

• times
Print the accumulated user and system times for the shell and for processes run from the shell.

• trap [arg] [sigspec]
The commandarg is to be read and executed when the shell receives signal(s)sigspec. If arg is
absent or -, all specified signals are are reset to their original values (the values they had upon
entrance to the shell). If arg is the null string this signal is ignored by the shell and by the
commands it invokes.sigspec is either a signal name in <signal.h>, or a signal number. If sigspec
is EXIT (0) the commandarg is executed on exit from the shell. With no arguments, trap prints
the list of commands associated with each signal number. The -l option causes the shell to print
a list of signal names and their corresponding numbers. An argument of -- disables option
checking for the rest of the arguments. Signals ignored upon entry to the shell cannot be trapped
or reset. Trapped signals are reset to their original values in a child process when it is created.
The return status is false if either then trap name or number is invalid; otherwise trap returns true.

• type [-all] [-type | -path] [name ...]
With no options, indicate how eachname would be interpreted if used as a command name. If
the-type flag is used, type prints a phrase which is one ofalias, keyword, function, builtin, orfile
if name is an alias, shell reserved word, function, builtin, or disk file, respectively. If the name is
not found, then nothing is printed, and an exit status of false is returned. If the-path flag is used,
type either returns the name of the disk file that would be executed ifname were specified as a
command name, or nothing if-type would not returnfile. If a command is hashed,-path prints
the hashed value, not necessarily the file that appears first in PATH. If the-all flag is used, type
prints all of the places that contain an executable namedname. This includes aliases and
functions, if and only if the-path flag is not also used. The table of hashed commands is not
consulted when using -all. type accepts -a, -t, and-p in place of-all, -type, and-path,
respectively. An argument of-- disables option checking for the rest of the arguments.type
returns true if any of the arguments are found, false if none are found.

• ulimit [-SHacdfmstpn [limit]]
ulimit provides control over the resources available to the shell and to processes started by it, on
systems that allow such control. The value oflimit can be a number in the unit specified for the
resource, or the value unlimited. TheH andS options specify that the hard or soft limit is set for
the given resource. A hard limit cannot be increased once it is set; a soft limit may be increased
up to the value of the hard limit. If neitherH norS is specified, the command applies to the soft

file1 -ef file True if file1 andfile2 have the same device and inode numbers.

-z string True if the length ofstring is zero.

-n string
string True if the length ofstring is non-zero.

string1= string2 True if thestrings are equal.

string1!= string2 True if thestrings are not equal.

! expr True if expr is false.

expr1-a expr2 True if bothexpr1 AND expr2 are true.

expr1 -o expr2 True if either expr1 OR expr2 is true.

arg1 OP arg2 OP is one of -eq, -ne, -lt, -le, -gt, or -ge. These arithmetic binary operators
return true ifarg1 is equal, not-equal, less-than, less-than-or-equal,
greater-than, or greater-than-or-equal thanarg2, respectively.Arg1 andarg2
may be positive integers, negative integers, or the special expression -lstring,
which evaluates to the length ofstring.

 GNU Bash Shell Reference 2-35

Invocation

limit. If limit is omitted, the current value of the soft limit of the resource is printed, unless theH
option is given. When more than one resource is specified, the limit name and unit is printed
before the value. Other options are interpreted as follows:

The argument-- disables option checking for the rest of the arguments. Iflimit is given, it is the
new value of the specified resource (the -a option is display only). If no option is given, then-f
is assumed. Values are in 1024-byte increments, except for -t, which is in seconds, and-p, which
is in units of 512-byte blocks.

• umask [-S] [mode]
The user file-creation mask is set tomode. If mode begins with a digit, it is interpreted as an octal
number; otherwise it is interpreted as a symbolic mode mask similar to that accepted by
chmod(1). Ifmode is omitted, or if the-S option is supplied, the current value of the mask is
printed. The-S option causes the mask to be printed in symbolic form; the default output is an
octal number. An argument of-- disables option checking for the rest of the arguments.

• unalias [name ...]
Removenames from the list of defined aliases. The return value is true unlessname is not a
defined alias.

• unset [-fv] [name ...]
For eachname, remove the corresponding variable or, given the-f option, function. An argument
of -- disables option checking for the rest of the arguments. Note that PATH, IFS, PPID, PS1,
PS2, UID, and EUID cannot be unset. If any of RANDOM, SECONDS, or LINENO are unset,
they lose their special properties, even if they are subsequently reset. The exit status is true unless
the variablename does not exist or is non-unsettable.

• wait [n]
Wait for the specified process and report its termination status.n may be a process ID or a job
specification; if a job spec is given, all processes in that job’s pipeline are waited for. Ifn is not
given, all currently active child processes are waited for, and the return code is zero.

Invocation
A login shell is one whose first character of argument zero is a-, or one started with the -login flag.

-a All current limits are reported

-c The maximum size of core files created

-d The maximum size of a process’s data segment

-f The maximum size of files created by the shell

-m The maximum resident set size

-s The maximum stack size

-t The maximum amount of cpu time in seconds

-p The pipe size in 512-byte blocks (this may not be set)

-n The maximum number of open file descriptors (most systems do not allow this value to be set,
only displayed)

2-36 LightStream 2020 NP O/S Reference Manual

See Also

An interactive shell is one whose standard input and output are both connected to terminals (as
determined by isatty(3)), or one started with the-i flag. PS1 is set and $- includes i if bash is
interactive, allowing a way to test this state from a shell script or a startup file.

See Also
The Gnu Readline Library, Brian FoxThe Gnu History Library, Brian FoxA System V Compatible
Implementation of 4.2BSD Job Control, David LennertHow to wear weird pants for fun and profit,
Brian Fox sh(1), ksh(1), csh(1)

Files
/bin/bash The bash executable /etc/profile The system-wide initialization file, executed for login
shells ~/.bash_profile The personal initialization file, executed for login shells ~/.bashrc The
individual per-interactive-shell startup file ~/.inputrc Individual Readline initialization file

Authors
Brian Fox, Free Software Foundation (primary author) bfox@ai.MIT.Edu

Chet Ramey, Case Western Reserve University chet@ins.CWRU.Edu

Bug Reports
If you find a bug in bash, you should report it. But first, you should make sure that it really is a bug,
and that it appears in the latest version of bash that you have.

Once you have determined that a bug actually exists, mail a bug report to
bash-maintainers@ai.MIT.Edu. If you have a fix, you are welcome to mail that as well! Suggestions
and ‘philosophical’ bug reports may be mailed to bug-bash@ai.MIT.Edu or posted to the Usenet
newsgroup gnu.bash.bug.

ALL bug reports should include:

The version number of bash The hardware and operating system The compiler used to compile
A description of the bug behavior A short script or ‘recipe’ which exercises the bug

Comments and bug reports concerning this manual page should be directed to
chet@ins.CWRU.Edu.

Login shells: On login: If/etc/profile exists, source it.
If ~/.bash_profile exists, source it,
else if ~/.bash_login exists, source it,
else if ~/.profile exists, source it.

On logout: If ~/.bash_logout exists, source it.

Non-login interactive shells: On startup: If ~/.bashrc exists, source it.

Non-interactive shells: On startup If the environment variable ENV is non-null,
expand it and source the file it names.

 GNU Bash Shell Reference 2-37

Bugs

Bugs
It’s too big and too slow.

There are some subtle differences between bash and traditional versions of sh, mostly because of the
POSIX specification.

Aliases are confusing in some uses.

2-38 LightStream 2020 NP O/S Reference Manual

Bugs

